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Abstract

This paper develops new methods for pairwise comparisons of predictive accuracy

with cross-sectional data. Using a common factor setup, we establish conditions on

cross-sectional dependencies in forecast errors which allow us to test the null of equal

predictive accuracy on a single cross-section of forecasts. We consider both uncondi-

tional tests of equal predictive accuracy as well as tests that condition on the real-

ization of common factors and show how to decompose forecast errors into exposures

to common factors and idiosyncratic components. An empirical application compares

the predictive accuracy of financial analysts’ short-term earnings forecasts across six

brokerage firms.
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1 Introduction

What, if anything, can we learn about forecasting performance from a single cross-section

of data? This question is becoming highly relevant as large cross-sections of forecasts are

now routinely recorded for numerous economic and financial outcomes: financial analysts

predict company earnings and revenues for hundreds of firms covering multiple industries;

credit card companies conduct billions of forecasts for real-time transactions to guard against

fraud; banks and international organizations forecast macroeconomic outcomes across many

countries and sectors.

Comparisons of forecasting performance conducted on a single cross-section has the po-

tential for yielding important economic insights that easily get masked by averaging perfor-

mance over longer spans of time. First, forecasting performance may be state- and time-

dependent. A test conducted on a single cross-section might find that model-based forecasts

are inferior to survey forecasts during, say, the Covid-19 epidemic although the two forecasts

are equally accurate when their performance gets averaged over a longer sample. Such a

finding could indicate that survey participants possessed important forward-looking infor-

mation about the impact of this event that was not reflected in past data. Second, when

conducted on individual time periods, cross-sectional tests can be used to identify points in

time during which one forecast performs relatively well or to identify shifts over time in fore-

casting performance. Third, performance evaluations conducted on individual cross-sections

facilitate faster real-time comparisons of predictive accuracy than conventional methods that

require calculating often lengthy time-series averages which tends to slow down discovery of

deterioration or breakdown in forecasting performance. Fourth, inference conducted on a

single cross-section dispenses with time-series stationarity assumptions that are unlikely to

be valid in many situations.

From an inferential perspective, the key challenge for cross-sectional comparisons of fore-

casting performance is the likely presence of common components in forecast errors. Such

common components can invalidate the use of a cross-sectional central limit theorem (CLT)
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to derive distributional results for test statistics based on cross-sectional averages. To ad-

dress this challenge, we develop a common factor framework for capturing cross-sectional

dependencies in forecast errors and separately consider the cases with homogeneous and het-

erogeneous factor loadings. The case with homogeneous factor loadings gives rise to tests

of equal unconditionally expected squared error loss, while heterogeneous factor loadings

lead to tests that condition on factor realizations. Although these tests are fundamentally

different we show that, in practice, they lead to very similar inference. Forecast comparisons

conducted on individual cross-sections are robust to changes in both the number of factors

and in the factor loadings which can be an important concern in empirical work, see Cheng

et al. (2016).

Common components in the forecast errors contain important economic information

about the underlying models used by forecasters and the extent to which shocks are funda-

mentally unpredictable. Large shocks to outcomes that were unanticipated by all forecasters

and, thus, are common, cancel out from pairwise comparisons of squared forecast error differ-

ences to the extent that they affect individual forecasters by the same amount. Conversely,

idiosyncratic error components that are specific to individual forecasters do not cancel out

from squared error loss differentials.

To get a better sense of the commonality and predictability of economic shocks, we

propose a new decomposition of the squared forecast error differential into a squared bias

component, which tracks differences in forecast exposures to common factors, and an id-

iosyncratic error variance component. Only the total squared forecast error differential is

observed, so we develop three approaches to estimate the common factors in forecast errors,

namely (i) a cluster method that imposes homogeneity restrictions on factor loadings within

clusters of variables and can be computed on a single cross-section; (ii) a common correlated

effects estimator based on Pesaran (2006); and (iii) a principal components approach. Unlike

the cluster approach, the second and third approach require the availability of time-series

data to estimate factor loadings. Moreover, these approaches work under different assump-
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tions about the number of factors and patterns in factor loadings and cover many of the

situations encountered by applied researchers.

We illustrate our new tests in an empirical application to financial analysts’ short-term

forecasts of individual firms’ quarterly earnings. We compare the predictive accuracy across

six brokerages covering a total of between 1,400 and 1,800 different firms during a sample

that spans twenty years. We find evidence of highly significant correlation across brokerage

firms’ earnings forecast errors, most of which can be captured through their loadings on a

single common factor. Empirically, we find that our cross-sectional tests of equal predictive

accuracy across brokerage firms are highly robust regardless of whether factor loadings are

assumed to be homogeneous or heterogeneous and so yield similar results for the conditional

and unconditional cases. For the vast majority of quarters, brokerage firms produce similarly

accurate earnings forecasts, but we also identify some quarters with rejections of the null of

equal predictive accuracy.

Using our decompositions we find that, in general, differences in idiosyncratic error vari-

ances account for more of the variation in squared error loss differences in brokerage firms’

earnings forecasts than the squared bias. Differences in the accuracy of earnings forecasts in

individual quarters thus appear to be mostly driven by differences in brokerage firms’ ability

to reduce uncertainty about the idiosyncratic earnings component and is less a reflection of

differences in exposures to common factor shocks.

Our paper expands to a cross-sectional setting a large literature that compares the pre-

dictive accuracy of time-series forecasts. Chong and Hendry (1986) propose tests of forecast

encompassing. More recently, Diebold and Mariano (1995) and West (1996) develop tests

for comparing the null of equal predictive accuracy. Clark and McCracken (2001) and Mc-

Cracken (2007) focus on comparisons of predictive accuracy for forecasts that are generated

by nested models, while accounting for the effect of recursive updating in the parameter

estimates used to generate forecasts. Giacomini and White (2006) propose a test of equal

predictive accuracy that accounts for the presence of non-vanishing parameter estimation
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error and develop methods for conditional forecast comparisons. We build on these ear-

lier contributions, but show how the presence of a cross-sectional dimension can enrich the

set of economic hypotheses that can be tested and dispenses with the need for restrictive

assumptions on time-series stationarity for the underlying data generating process.

A related literature evaluates the efficiency of forecasts with panel data; see, e.g., Keane

and Runkle (1990), Davies and Lahiri (1995), and Patton and Timmermann (2012). How-

ever, this literature does not provide methods for comparing the relative accuracy of different

forecasts or for conducting tests of the null of equal predictive accuracy across different fore-

casts. An advantage of our new tests is that they can be computed using only a single

cross-section-provided that cross-sectional dependencies are properly accounted for. This

makes the tests particularly useful in microeconomic forecast applications which often have

short time-series dimensions since such surveys are conducted infrequently or due to the

attrition of individual households that enter and exit.1

The outline of the paper is as follows. Section 2 presents our new tests for comparing

predictive accuracy with individual cross-sections, while Section 3 develops our decompo-

sition of the mean squared forecast errors into a squared bias and an idiosyncratic error

variance component and derives statistics for testing the null that these two components are

of the same magnitude across different forecasts. Section 4 conducts an empirical analysis

that compares the predictive accuracy of firm-level short-term earnings forecasts across six

brokerage firms. Section 5 uses Monte Carlo simulations to explore the finite-sample size

and power properties of our tests in a variety of settings and Section 6 concludes. Technical

proofs are in an Appendix.
1Giacomini et al. (2019) discuss micro forecasting approaches for annual PSID panels while Liu et al.

(2018) and Liu et al. (2019) develop ways to forecast in panels with very short time-series dimensions.
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2 Tests for Cross-sectional Comparisons of Predictive

Accuracy

Formal tests used in comparisons of forecasting performance such as the well-known Diebold-

Mariano test (Diebold and Mariano (1995)) rely on time-series averages. While these tests

have proven useful in many economic applications, an important limitation of their usage is

that sample sizes (T ) are often short and so their statistical power can be quite low.2 Con-

versely, in situations with long samples, non-stationarities in the underlying data generating

process becomes an issue for inference. Moreover, new time-series observations arrive only

slowly when outcomes are measured at a monthly, quarterly, or annual frequency, reduc-

ing the usefulness of real-time comparisons of predictive accuracy. These points highlight

shortcomings of inference on predictive accuracy based on time-series averages.

In contrast, individual forecasting models can often be used to generate hundreds or even

thousands of cross-sectional forecasts each period, as in the case of forecasts for individual

customers, market places, product categories, or firms. Data with small T and large n

can be used to compare the accuracy of pairs of forecasts in a particular time period or

over a short period of time. Conducting such tests requires, however, an understanding of

the assumptions under which it is possible to establish the distribution of cross-sectional

averages underlying the test statistics. Most obviously, the loss differentials cannot be too

strongly cross-sectionally dependent–otherwise a CLT will not apply to the cross-sectional

test statistics.

We next develop a framework and a set of tests that allow us to conduct inference about

relative predictive accuracy on single cross-sections.
2This is particularly relevant for microeconomic applications that often rely on short surveys, see, e.g.,

Giacomini et al. (2019) and Liu et al. (2019).
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2.1 Setup

Let yit+h denote the realized value of unit i at time t+h, where i = 1, ...., n refers to the cross-

sectional dimension and t + h refers to the “target date”, i.e., the point in time at which

we observe the outcome. Further, suppose we observe the h-step-ahead forecast of yit+h

generated conditional on information available to the forecaster at time t. We denote these

by ŷit+h|t,m, where m = 1, ...,M indexes the individual forecasts (e.g., forecasting models)

and h ≥ 0 is the forecast horizon.

To compare the predictive accuracy of different forecasts we use a loss function that

quantifies the cost of different forecast errors. Following Diebold and Mariano (1995), define

the loss associated with forecast m as Lit+h|t,m = L(yit+h, ŷit+h|t,m). Consistent with most

empirical work, we assume that the loss is a quadratic function of the forecast error, eit+h,m =

yit+h − ŷit+h|t,m, and thus takes the form3

L(yit+h, ŷit+h|t,m) ≡ Lit+h|t,m = e2
it+h,m. (1)

Similarly, the squared-error loss differential between forecasts m1 and m2 for unit i at

time t+ h is given by (dropping the reference to m1and m2)

∆Li,t+h|t = e2
it+h,m1 − e

2
it+h,m2 . (2)

Following Diebold and Mariano (1995) and Giacomini and White (2006), we treat the

forecasts as given and make high-level assumptions on the distribution of the forecast errors

or, more generally, the losses Lit+h|t. Hence, we do not consider the effect of estimation error

on the distribution of the test statistics which we derive.4

To keep our analysis simple, we focus on pair-wise comparisons of forecasting performance

(M = 2). Often, empirical researchers have access to a large number of forecasts, e.g. from
3See Elliott et al. (2005) for a more general loss function that nests squared error loss.
4Estimation error and its effect on tests for equal predictive accuracy features prominently in the analysis

of West (1996), Clark and McCracken (2001), McCracken (2007), and Hansen and Timmermann (2015).
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surveys with large numbers of participants, from different forecasting models, or even from

several cross-sections spanning different time periods. This introduces a multiple hypothesis

testing problem when analyzing outcomes of several (pair-wise) test statistics. Dealing with

this issue is beyond the scope of the present paper, but Qu et al. (2019) propose a Sup test

procedure that allows for multiple comparisons while controlling the family-wise error rate.

2.2 Factor Structure

To capture cross-sectional dependencies in forecast errors, suppose we can decompose the

forecast error of model m, ei,t+h,m = yi,t+h− ŷi,t+h|t,m, into a common component, ft+h, with

factor loadings λim, and an idiosyncratic component, uit+h,m, so that, for m = 1, 2,

ei,t+h,m = λ′imft+h + ui,t+h,m. (3)

Under this setup, forecast errors are allowed to be affected by the same common factors,

ft+h, but we allow for differences in the factor loadings (λim) across units, i, and forecasts,

m. Factor loadings, λim, can be either random or fixed as we make clear in the analysis

below.

The assumed factor structure in (3) is typically well-motivated in economic forecast

applications. Outcomes of economic variables such as GDP growth and inflation are likely

to contain an important common unpredictable component reflecting large unanticipated

supply shocks (e.g., commodity price shocks) or crises in financial markets. Common factors

can be either global or regional in nature and are likely to have a very different impact

on, e.g., advanced versus developing economies. The presence of common and idiosyncratic

shocks is also consistent with macroeconomic models such as Mackowiak and Wiederholt

(2009). A distinct advantage of the setup, which we demonstrate in our empirical analysis,

is that the presence of common factors in the forecast errors is empirically testable through

simple econometric tests.
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We next consider how to conduct cross-sectional tests of equal predictive accuracy using

the squared error loss function in (2) and the factor structure in (3).

2.3 Null Hypotheses

The assumed common factor structure in (3) introduces a common component that does not

disappear asymptotically even as n → ∞. To address this issue, we consider two different

approaches for testing the null of equal predictive accuracy in a single cross-section.

First, we can test the unconditional null that the cross-sectional average loss differential

at time t+ h, ∆Lt+h = n−1∑n
i=1 ∆Li,t+h|t, equals zero in expectation:

Hunc
0,t+h : E(∆Lt+h) = 0. (4)

While the forecasts are only expected to be equally accurate at a single point in time,

t+ h, differences in predictive accuracy at that time are hypothesized to balance out across

units, i = 1, ..., n. As we show below, this requires that the common factor component that

introduces dependence in forecast errors cancels out in the loss differentials.

Second, we can test whether two forecasts are expected to be equally accurate, at time

t+h, conditional on a particular outcome of the factor realizations, ft+h, and factor loadings

{λi1, λi2}ni=1 so that, for F = σ(ft+h, {λi1, λi2}ni=1),

Hcond
0,t+h : E(∆Lt+h | F) = 0. (5)

This approach is valid provided that, conditional on the realized factor, a cross-sectional

CLT applies to the idiosyncratic error components.

The conditional null in (5) is different from the unconditional null in (4) but is often

of separate economic interest. For example, we can use (5) to test whether, conditional on

the unusual realizations of the factors that occurred during the Global Financial Crisis, the

accuracy of a set of alternative forecasts was the same. Or, as the complement to this, we
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can test whether the forecasts were equally accurate during more “normal” years.

If, in fact, factor realizations were the main driver of differences in the predictive accuracy

of a pair of forecasts, we can imagine situations in which we reject the null in (4) without

rejecting (5). Conversely, two forecasts could be equally accurate “on average” in a given

period because one forecast is more strongly affected by shocks to the common factors and

less affected by idiosyncratic error shocks, while the reverse holds for the other forecast and

the effects balance out. In this case, we do not reject the null in (4), whereas the conditional

null in (5) is rejected.

We next discuss settings under which the hypotheses in (5) and (4) hold along with how

they can be tested.

2.4 Homogeneous Factor Loadings

Suppose loadings on the common factors affecting the individual forecast errors in (3) are

the same across the two forecasts so λi1 = λi2 = λi. Under quadratic error loss,

∆Li,t+h|t = (u2
i,t+h,1 − u2

i,t+h,2) + 2(ui,t+h,1 − ui,t+h,2)λ′ift+h. (6)

Common unpredictable shocks that are not picked up by any of the forecasts can be

thought of as satisfying the assumption of homogeneous factor loadings since they can have

a different effect on different units (λi1 6= λj1 for i 6= j), but will affect the forecasts in the

same way(λ′i1 = λ′i2 for all i). These shocks will, therefore, cancel out from the forecast error

differentials. For example, if the effects of a major event such as the Global Financial Crisis

were unanticipated by both forecasts and affected them by the same amount, they cancel

out from the loss differential.

Under homogeneous factor loadings, the cross-sectional dependence arising from the fore-

casts’ exposure to the common factors, ft+h, does not play an important role in deriving the

asymptotics of tests of the null in (4) since λ′ift+h in (6) is multiplied by (ui,t+h,1 − ui,t+h,2).
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This is assured under the following assumption which requires (conditionally) independent

idiosyncratic errors as well as a Lyapounov condition:

Assumption 1. Suppose that the loadings are homogeneous, λi1 = λi2 = λi for i = 1, ..., n.

Conditional on F = σ(ft+h, {λi1, λi2}ni=1), {(ui,t+h,1, ui,t+h,2)}ni=1 is independent across i with

mean zero and bounded (4 + δ) moments for some δ > 0. Moreover, min1≤i≤n Var[(ui,t+h,1−

ui,t+h,2) | F ] ≥ c for some constant c > 0 and

(∑n
i=1 |λ′ift+h|2+δ

)1/(2+δ)

(∑n
i=1 |λ′ift+h|2)1/2 = oP (1).

To test the null of equal expected loss for the cross-sectional average in (4), consider the

test statistic

Qt+h = n1/2∆Lt+h|t√
n−1∑n

i=1

(
∆Li,t+h|t

)2
. (7)

Under the assumption of pair-wise homogeneous factor loadings, (6) shows that testing

the null of equal predictive accuracy in period t + h amounts to testing that E(u2
i,t+h,1 −

u2
i,t+h,2) = 0. This is easily accomplished under Assumption 1 which ensures independence

across i for (ui,t+h,1, ui,t+h,2) so that asymptotic normality can be established for Qt+h in (7)

as we next show:5

Theorem 1. Suppose Assumption 1 holds. Then under the null of equal expected cross-

sectional predictive accuracy, Hunc
0,t+h : E(∆Lt+h) = 0, we have

lim sup
n→∞

P
(
|Qt+h| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

Theorem 1 shows that homogeneous factor loadings lead to a simple test of the null of

equal expected loss for the pooled average using data only on a single cross-section. Moreover,
5Alternatively, we can test this null under assumptions of stationarity which allows us to exploit time-

series variation in the factors.
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the test statistic follows a Gaussian distribution in large cross-sections.

For now, we do not go into details of how the assumption of homogeneous loadings can

be tested. However, as we show below, our approach for testing the null in (4) remains valid

as long as n−1∑n
i=1[(λ′i,1ft+h)2 − (λ′i,2ft+h)2] = 0. Moreover, this condition can be tested

empirically and we propose ways to do so later on.

2.5 Heterogeneous Factor Loadings

Next, consider the case with heterogeneous factor loadings for the forecast errors, i.e., λi,1 6=

λi,2. For this case, the loss differential in (6) is generalized to

∆Li,t+h|t =
[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
+
[
u2
i,t+h,1 − u2

i,t+h,2 + 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2)
]
. (8)

When the factor loadings differ for the forecasts, equation (8) shows that the relative predic-

tive accuracy in period t+ h contains a systematic component, E
[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
.

Even if ft+h is independent of the factor loadings, {(λi,1, λi,2)}ni=1, and these loadings are in-

dependent across i, n−1/2∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
is asymptotically normal only con-

ditional on ft+h. This suggests conducting a test of equal expected predictive accuracy

conditional on the factor realization as is done in (5).

To test the conditional null in (5), let F = σ(ft+h, {λi1, λi2}ni=1) and assume that

E(ui,t+h,1 | F) = E(ui,t+h,2 | F) = 0. Define

ξi,t+h =
(
u2
i,t+h,1 − u2

i,t+h,2

)
− E

(
u2
i,t+h,1 − u2

i,t+h,2 | F
)

+ 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,+ht,2).

Using equation (8), we have

∆Lt+h − E(∆Lt+h | F) = n−1
n∑
i=1

ξi,t+h. (9)
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The ideal variance estimate for the object in (9) is n−1∑n
i=1 ξ

2
i,t+h. However, at the unit level,

we only observe ei,t+h,m and hence are restricted to computing n−1∑n
i=1(∆Li,t+h|t−∆Lt+h)2.

Consider the following test statistic

Q̃t+h = n1/2∆Lt+h√
n−1∑n

i=1(∆Li,t+h|t −∆Lt+h)2
. (10)

To establish properties of the test statistic in (10), we need a set of regularity conditions

which we summarize in the following assumption:

Assumption 2. Conditional on F = (ft+h, {λi1, λi2}ni=1), {(ui,t+h,1, ui,t+h,2)}ni=1 is indepen-

dent across i with mean zero and bounded (4 + δ) moments for some δ > 0. Moreover,

min1≤i≤n Var[ξi,t+h | F ] ≥ c for some constant c > 0.

Using this assumption, we can now test the null E(∆Lt+h | F) = 0 or, equivalently,

establish a confidence interval for E(∆Lt+h | F):

Theorem 2. Suppose Assumption 2 holds. Then, under the conditional null Hcond
0,t+h :

E(∆Lt+h | F) = 0, the following result holds for the test statistic in (10)

lim sup
n→∞

P
(
|Q̃t+h| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

Results based on the test statistic in (10) can be interpreted in two ways. First, as

explained above, they can be viewed as tests of the conditional null E(∆Lt+h | F) = 0.

Second, if we assume that the factor loadings {(λi,1, λi,2)}ni=1 are random, independent across

i and independent of ft+h, we can use the test statistic in (10) to test E(∆Lt+h | ft+h) = 0

without also conditioning on the factor loadings (λi,1 and λi,2). Testing the latter hypothesis

introduces an additional term in the numerator of (10)

E(∆Lt+h | F)− E(∆Lt+h|t | ft+h)
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= f ′t+h

(
n−1

n∑
i=1

[
λi,1λ

′
i,1 − λi,2λ′i,2 − E(λi,1λ′i,1 − λi,2λ′i,2)

])
ft+h.

However, the denominator in (10) still overestimates the variance of the numerator of

the test statistic under the null. As a result, Theorem 2 remains valid for testing the null

E(∆Lt+h | ft+h) = 0 and the critical values remain the same.

Under either interpretation, it follows from (8) that the variance estimate in (10) is

conservative. Under the first interpretation, this follows because the variance estimate takes

into account variation in the factor structure and in E(u2
i,t+h,1 − u2

i,t+h,2). Under the second

interpretation, the variance estimate still includes cross-sectional variations in E(u2
i,t+h,1 −

u2
i,t+h,2). This seems unavoidable without introducing additional modeling assumptions that

impose structure on this variation.6

2.6 Other loss functions

In practice, applied researchers might consider loss functions other than the squared error

loss in (1), including linex, absolute error or piece-wise linear loss, see, e.g., Elliott et al.

(2005). Fortunately, the methodology in Section 2.5 can readily be extended to such loss

functions.

To see this, suppose we replace Assumption 2 with the assumption that, conditional on

F , {∆Li,t+h|t}ni=1 is independent, where ∆Li,t+h|t = L(yit+h, ŷit+h|t,1) − L(yit+h, ŷit+h|t,2) for

a general loss function L(·, ·). Under the conditional null hypothesis E(∆Lt+h | F) = 0,

∆Lt+h −E(∆Lt+h | F) will be the average of terms that, conditional on F , have mean zero

and are independent. Therefore, with moment conditions similar to those in Assumption

2, Theorem 2 remains valid. In Section 5, we demonstrate this point using Monte Carlo

simulations for the test of equal conditionally expected loss applied to the linex loss function.

We find results that are very similar to those obtained under squared error loss.
6Essentially, we have a CLT for independent but non-identically distributed variables, ∆Li,t+h|t −

E
[
∆Li,t+h|t|ft+h

]
, but the exact variance is difficult to estimate because E

[
∆Li,t+h|t|ft+h

]
cannot be

estimated from the observed data.
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For the unconditional test, we can consider a linear factor structure as a series approxi-

mation. For example, suppose that ei,t+h,m = λ′imft+h+ui,t+h,m and Li,t+h,m = φ(ei,t+h,m) for

some function φ(·). Provided that φ(·) is smooth enough and ei,t+h,m is bounded, standard

approximation results can be used to give a polynomial approximation φ(x) ≈ ∑k
j=0 ajx

j,

where k grows slowly with the sample size. Because (λ′imft+h + ui,t+h,m)j contains powers of

λ′imft+h, polynomials of factors and factor loadings become new factors in an augmented lin-

ear factor structure. Clearly, the details of this approach (e.g., approximation rate and strong

factor conditions) require serious theoretical analysis, which we leave for future research.

Cross-sectional comparisons of forecast errors sometimes involve variables that are mea-

sured in very different units. This can mean that the comparisons are dominated by a few

variables, possibly impairing the finite-sample behavior of the test statistics. To address

this point, one can use squared percentage errors which tend to be more comparable across

variables. Alternatively, individual variables’ forecast errors can be scaled by their standard

errors prior to calculating the test statistics.

3 Decomposing Differences in Forecasting Perfor-

mance

Equation (3) decomposes the forecast errors into a common factor component and an un-

correlated idiosyncratic error component. In some economic applications, it is important to

be able to attribute differences in forecasting performance to these two sources. For exam-

ple, Mackowiak and Wiederholt (2009) develop a rational inattention model in which firms

acquire and process information subject to a constraint on their total attention budget. Con-

sistent with the setup in (3), Mackowiak and Wiederholt (2009) partition firms’ information

set into signals about a common (aggregate) factor and an idiosyncratic term. The constraint

on each forecaster’s attention introduces a trade-off between reducing the uncertainty about

the common factor versus reducing the variance of the idiosyncratic error. Similarly, the
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finance literature on performance of investment managers distinguishes between generalists

who possess market timing skills that require an ability to predict pervasive (common) fac-

tors affecting a broad set of asset returns versus stock pickers with security selection skills

which require specialist firm-level knowledge akin to more precise signals on the idiosyncratic

error terms (see, e.g., Blake et al. (2013)).

The importance of these types of skills is likely to vary over time as a result of com-

mon factor volatility being higher during recessions or in financial crises (favoring market

timers) and lower during expansions and calmer periods (favoring stock pickers), see, e.g.,

Kacperczyk et al. (2014). By conducting tests on individual cross-sections, our approach

can help identify periods in which forecasters with a comparative advantage at predicting

the common factors (generalists) perform relatively better than the forecasters who focus

instead on the idiosyncratic error component (specialists).

Decomposing forecast errors into common factors and uncorrelated idiosyncratic terms is

also important in applications of forecast combination since these terms matter for calculating

optimal combination weights which depend on both the overall error variance and on the

covariance between forecast errors. The larger the contribution to forecast errors from the

common factors and the more homogeneous the factor loadings are, the closer the optimal

combination weights will be to equal-weighting. Related to this, the scope for achieving

gains in predictive accuracy from forecast combination is likely to be highest during times

when the correlation in forecast errors is weakest, i.e., less driven by common factors with

similar loadings and more by idiosyncratic errors.

We next discuss how to conduct inference on the squared conditional bias and idiosyn-

cratic variance components.

3.1 Decomposing the Conditional Squared Error Loss

Using equation (8), we can express the (cross-sectional) average conditional squared error

loss difference as the sum of the average difference in squared conditional bias and the average
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difference in the conditional idiosyncratic error variance:

n−1
n∑
i=1

E
(
∆Li,t+h|t | F

)
︸ ︷︷ ︸

E(∆Lt+h | F) =

n−1
n∑
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
︸ ︷︷ ︸

bias2
t+h +

n−1
n∑
i=1

E
(
u2
i,t+h,1 − u2

i,t+h,2 | F
)

︸ ︷︷ ︸ .
E
(
∆u2

t+h | F
)

(11)

The terms on the right hand side of the decomposition in (11) are unobserved. However,

note that

∆Lt+h − bias2
t+h = ∆u2

t+h + 2
n

n∑
i=1

[
λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2

]
, (12)

where ∆u2
t+h = n−1∑n

i=1

(
u2
i,t+h,1 − u2

i,t+h,2

)
. Provided that n is relatively large so the last

term on the right side of (12) is small, the bias-adjusted average loss differential on the left

hand side of (12) can be expected to be a good estimate of the difference in the two forecasts’

idiosyncratic variance at time t, E
(
∆u2

t+h | F
)
.7

We next discuss three strategies for computing (λ′i,1ft+h)2− (λ′i,2ft+h)2. The first exploits

clusters in factor loadings and so is applicable when factor loadings are homogeneous within

certain groups of units. This approach can be computed on a single cross-section and poses

no limit on the number of factors affecting the forecast errors but requires that clusters can

be identified within which there is little or no heterogeneity in the factor loadings. The

second approach uses the common correlated effects (CCE) method of Pesaran (2006) and

so requires the availability of panel data to estimate factor loadings from time series data.

This approach does not impose tight restrictions on factor loadings but, in practice, limits

the number of common factors driving the forecast errors. The third approach, principal

components (PCA), again requires the availability of panel data and is similar to the CCE

approach. However, it does not impose tight bounds on the number of common factors in

the forecast error differentials.
7Of course, we do not directly observe the idiosyncratic errors and factors. However, since ∆Lt+h is

observed, from (12) we only need to estimate the factor-induced squared bias term, bias2
t+h.
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3.2 Clustering in Factor Loadings

It is common in empirical applications to have data on units that share certain observable

characteristics or features which make them more similar than randomly selected units.

For example, advanced economies may react in a broadly similar way to supply shocks

which, in turn, affect emerging or developing economies very differently. Or, the effect of an

interest rate increase on the default probability of credit card holders may be quite different

across high, medium, and low income households, yet be broadly similar within these three

categories.

In this section we develop a class of estimators using the identifying assumption that clus-

ters of cross-sectional units share the same factor loadings, while allowing factor loadings

to differ across clusters. Formally, suppose that a set of K clusters ⋃Kk=1 Hk = {1, ..., n}

form a partition of all n units so that each unit belongs to a unique cluster, Hk, i.e.,

Hj ∩ Hl = ∅ with nk = |Hk| elements in the kth cluster. We assume that the cluster

membership for each unit is known ex ante and so is not determined endogenously from

the data. Moreover, suppose that the factor loadings (λi,1, λi,2) can differ across clusters

(λi,1, λi,2)6=(λj1,λj2) for i ∈ Hk and j ∈ Hl, but are homogeneous within clusters

(λi,1, λi,2) = (λ1,(k), λ2,(k)) for all i ∈ Hk. (13)

3.2.1 Testing Equal Idiosyncratic Error Variances

We first discuss how to test the conditional null of equal average idiosyncratic error variance

for the two forecasts given F for all units in cluster k:

H idio
0 : n−1

k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F) = 0. (14)

To test this null, we need to construct an estimate of the idiosyncratic variance within each

cluster. To see how group patterns in factor loadings allow us to identify the idiosyncratic
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variance component, ∆u2
t+h, define the errors from the two forecasts, averaged within each

cluster, as

e1,k,t+h ≡ n−1
k

∑
i∈Hk

(
yi,t+h − ŷi,t+h|t,1

)
= λ′1,(k)ft+h + n−1

k

∑
i∈Hk

ui,t+h,1,

and

e2,k,t+h ≡ n−1
k

∑
i∈Hk

(
yi,t+h − ŷi,t+h|t,2

)
= λ′2,(k)ft+h + n−1

k

∑
i∈Hk

ui,t+h,2.

Squaring these within-cluster average forecast errors, we have

e2
1,k,t+h − e2

2,k,t+h = (λ′1,(k)ft+h)2 − (λ′2,(k)ft+h)2 +
n−1

k

∑
i∈Hk

ui,t+h,1

2

−

n−1
k

∑
i∈Hk

ui,t+h,2

2

+ 2λ′1,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,1 − 2λ′2,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,2. (15)

Define ∆Lt+h,k ≡ n−1
k

∑
i∈Hk

∆Li,t+h and let ∆u2
t+h,k be the average loss differential for

cluster k adjusted for the difference (e2
1,k,t+h − e2

1,k,t+h):

∆u2
t+h,k = ∆Lt+h,k − (e2

1,k,t+h − e2
1,k,t+h). (16)

This suggests using the following statistic to test H idio
0 in (14):

Sk =
√
nk∆u

2
t+h,k√

n−1
k

∑
i∈Hk

(∆Li,t+h −∆Lt+h,k)2
. (17)

Theorem 3. Suppose Assumption 2 holds. Then under the null hypothesis H idio
0 :

n−1
k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F) = 0, we have

lim sup
nk→∞

P
(
|Sk| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.
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Alternatively, we can test the weaker null of equal expected squared idiosyncratic forecast

errors holding on average, i.e., across all units though not necessarily within each cluster:

H idio−av
0 : n−1

n∑
i=1

E(u2
i,t+h,1 − u2

i,t+h,2 | F) = 0. (18)

To this end, let ∆u2
t+h = ∑K

k=1
nk

n
∆u2

t+h,k be the cluster-weighted average difference in

squared idiosyncratic forecast errors, and consider the test statistic

Sc =
√
n∆u2

t+h√
n−1∑K

k=1
∑
i∈Hk

(∆Li,t+h −∆Lt+h,k)2
. (19)

We use Sc to test the null in (18) of equal average idiosyncratic forecast error variance:

Corollary 1. Suppose Assumption 2 holds and assume that limn→∞ nk/n > 0 for all 1 ≤

k ≤ K. Then under the null H idio−av
0 : n−1∑n

i=1 E(u2
i,t+h,1 − u2

i,t+h,2 | F) = 0, we have

lim sup
n→∞

P
(
|Sc| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

Using Corollary 1, we can compute a 1−α confidence interval for the squared idiosyncratic

forecast errors ∆u2
t+h as

∆u2
t+h ±

z1−α/2√
n

√√√√√n−1
K∑
k=1

∑
i∈Hk

(∆Li,t+h −∆Lt+h,k)2. (20)

3.2.2 Testing Equal Squared Biases

Next, consider the squared bias component of the expected loss differential in (11). Under

the assumed homogeneous factor loadings within clusters in (13), we have

n−1
n∑
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
=

K∑
k=1

nk
n

(
(λ′1,(k)ft+h)2 − (λ′2,(k)ft+h)2

)
.
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We can estimate (λ′1,(k)ft+h)2 − (λ′2,(k)ft+h)2 by e2
1,k,t+h − e2

2,k,t+h. By (15), we have

e2
1,k,t+h − e2

2,k,t+h = (λ′1,(k)ft+h)2 − (λ′2,(k)ft+h)2

+ 2λ′1,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,1 − 2λ′2,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,2 +OP (n−1
k ).

To test the null of equal squared bias, we use the following test statistic:

Bn,1 =
√
n
∑K
k=1

nk

n
(e2

1,k,t+h − e2
2,k,t+h)

2
√
n−1∑K

k=1
∑
i∈Hk

(e1,k,t+hûi,t+h,1 − e2,k,t+hûi,t+h,2)2
, (21)

where ûi,t+h,1 = yi,t+h− ŷi,t+h|t,m1 − e1,k,t+h and ûi,t+h,2 = yi,t+h− ŷi,t+h|t,m2 − e2,k,t+h. We can

show that Bn,1
(
n−1∑n

i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

])
→d N(0, 1), and so:

Theorem 4. Suppose Assumptions 1 holds and assume that limn→∞ nk/n > 0 for all 1 ≤

k ≤ K. Then under H0 : n−1∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
= 0, we have

lim sup
n→∞

P
(
|Bn,1| > z1−α/2

)
≤ α.

The null of equal squared bias relates to our earlier discussion of homogeneous versus

heterogeneous factor loadings: If factor loadings are the same across two sets of forecasts,

their squared bias differential should also be close to zero.

Theorem 4 yields a 1− α confidence interval for n−1∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
:

K∑
k=1

nk
n

(e2
1,k,t+h − e2

2,k,t+h)±
z1−α/2√

n

√√√√√n−1
K∑
k=1

∑
i∈Hk

(e1,k,t+hûi,t+h,1 − e2,k,t+hûi,t+h,2)2. (22)

Note that because Bn,1
(
n−1∑n

i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

])
→d N(0, 1), the confidence in-

terval is asymptotically exact.
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3.3 Factor Structure Estimated by CCE

In many empirical applications, a cluster structure may not be suitable either because units

are not easily assigned to individual clusters or because factor loadings are not homogeneous

within clusters. For such applications, a more traditional factor setting may be more ap-

propriate. To this end, suppose we observe a panel of forecast errors {ei,s+h,m}1≤i≤n, 1≤s≤T

generated according to the factor model in (3), ei,s+h,m = λ′i,mfs+h+ui,s+h,m, where m = 1, 2,

λi,m ∈ Rr×v and fs+h ∈ Rr with v ≥ r, so the number of observables, v, is at least equal

to the number of factors, r. The requirement that v ≥ r implies that if we do not include

observables other than the two sets of forecast errors, we can allow for at most two factors.

Conversely, including more observable variables that are driven by the same factors lets us

relax this restriction and allow for additional factors.

3.3.1 Difference in Idiosyncratic Error Variances

Let ei,s+h = (ei,s+h,1, ei,s+h,2)′ ∈ R2 and ui,s+h = (ui,s+h,1, ui,s+h,2)′ ∈ R2 be 2 × 1 vectors

of forecast errors and idiosyncratic residuals and define the cross-sectional averages ēs+h =

n−1∑n
i=1 ei,s+h, ūs+h = n−1∑n

i=1 ui,s+h and λ̄ = n−1∑n
i=1 λi with λi = (λi,1, λi,2) ∈ Rr×2.

Assuming that we can invoke a CLT for the cross-sectional average of the idiosyncratic

shocks, ūs+h will be small and ēs+h ≈ λ̄′fs+h can be used as a proxy for the unobserved

factors. This is the common correlated effects (CCE) idea proposed in Pesaran (2006). In

turn, we can estimate the individual factor loadings, λim, from a time-series regression

λ̂′i =
(

T∑
s=1

ei,s+hē
′
s+h

)(
T∑
s=1

ēs+hē
′
s+h

)−1

.

Let λi,1 denote the first column of λi, with similar notations used for λ̂i,1 and λ̂i,2. Con-

sider the following regularity conditions:

Assumption 3. The following conditions hold for m = 1, 2:

(1) the smallest eigenvalue of λ̄λ̄′ is bounded away from zero.
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(2) conditional on {fs+h}Ts+h=1 and {λi}ni=1, {ui,t+h,m}ni=1 has mean zero with bounded vari-

ance and is independent across i.

The first part of Assumption 3 implies that the number of factors cannot exceed the

dimension of ei,s+h since otherwise the smallest eigenvalue of λ̄λ̄′ is zero. We also impose

additional regularity conditions. These are part of Assumptions A, B and C in Bai (2003)

and are routinely imposed in factor analysis.

Assumption 4. The following conditions hold for m = 1, 2:

(1) n−1∑n
i=1 λi,mλ

′
i,m and Efs+hf ′s+h have eigenvalues bounded away from zero and infinity.

(2) ∑T
s+h=1

∑n
i=1 λi,mui,s+h,mf

′
s+h = OP (

√
nT ).

(3) There exists a constant M > 0 such that ‖γn(s, τ)‖ ≤ M and

T−1∑T
s+h=1

∑T
τ+h=1 ‖γn(s, τ)‖ ≤M , where γn(s, τ) = n−1∑n

i=1 Eui,s+hu
′
i,τ+h.

(4) n/T 2 = o(1).

Using Assumption 3 and 4, we can characterize the difference between the average squared

forecast errors and the average squared factor values, both weighted by the factor loadings,

λ′i :

Lemma 1. Under Assumptions 3 and 4, we have

n−1/2
n∑
i=1

[(λ̂′i,1ēt+h)2 − (λ′i,1ft+h)2] = 2n−1/2ū′t+hλ̄
′(λ̄λ̄′)−1

(
n∑
i=1

λi,1λ
′
i,1

)
ft+h + oP (1).

Next, consider the null that the difference in the squared idiosyncratic variance compo-

nent of the forecast errors equals zero:

H0 : n−1
n∑
i=1

E(u2
i,t+h,1 − u2

i,t+h,2 | F) = 0. (23)

To test this null, we use the following test statistic

Scce =
√
n∆û2

t+h√
n−1∑n

i=1(∆Li,t+h|t − [(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2]− ĉt+h + û′i,t+hD̂t+h)2
, (24)
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where ĉt+h = n−1∑n
i=1(∆Li,t+h|t − [(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2] + û′i,t+hD̂t+h),

∆û2
t+h = n−1

n∑
i=1

∆Li,t+h − n−1
n∑
i=1

[(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2] (25)

and

D̂t+h = n−1
n∑
i=1

(λ̂i,1λ̂′i,1 − λ̂i,2λ̂′i,2)ēt+h. (26)

Using these definitions, we now have the following result:

Theorem 5. Suppose that Assumptions 3 and 4 hold. Then under H0 : n−1∑n
i=1 E(u2

i,t+h,1−

u2
i,t+h,2 | F) = 0,

Scce →d N(0, 1).

Using that Scce follows a standard Gaussian distribution asymptotically, we can compute

a 1− α confidence interval for n−1∑n
i=1 E(u2

i,t,1 − u2
i,t,2 | F) as

∆û2
t+h ±

z1−α/2√
n

√√√√n−1
n∑
i=1

(∆Li,t+h|t − [(λ̂′i,1ēt+h)2 − (λ′i,2ēt+h)2]− ĉt+h + û′i,t+hD̂t+h)2 (27)

3.3.2 Squared Bias Differences

Next, consider the squared bias component of the MSE loss differential. Define

Dt+h = λ̄′(λ̄λ̄′)−1
(
n−1

n∑
i=1

[λi,1λ′i,1 − λi,2λ′i,2]
)
ft+h.

Using

√
n

(
n−1

n∑
i=1

[
(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2

]
− n−1

n∑
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

])
= 2n1/2ū′t+hDt+h+oP (1),

it follows that n−1∑n
i=1

[
(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2

]
is a
√
n-consistent estimator for the average

difference in the squared bias differential, n−1∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
, where the esti-

mation error is asymptotically 2ū′t+hDt+h. To construct tests for the squared bias difference,
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consider the following test statistic

Bn,2 =
n−1/2∑n

i=1

[
(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2

]
2
√
n−1∑n

i=1(û′i,t+hD̂t+h)2
, (28)

where, again, ûi,t+h = ei,t+h − λ̂′iēt+h. The following result characterizes the distribution of

this statistic:

Theorem 6. Suppose that Assumption 3 holds. Then under H0 :

n−1∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
= 0,

Bn,2 →d N(0, 1).

Using Theorem 6, we can construct a confidence interval for the average squared bias

differential, n−1∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
as

n−1
n∑
i=1

[
(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2

]
±
z1−α/2√

n

√√√√n−1
n∑
i=1

(û′i,t+hD̂t+h)2. (29)

Again, this confidence interval is asymptotically exact.

Comparing (27) and (29), we note a difference in the asymptotics. Although both vari-

ance expressions have û′i,t+hD̂t+h, the former has the additional term ∆Li,t+h|t− [(λ̂′i,1ēt+h)2−

(λ̂′i,2ēt+h)2] − ĉt+h. This difference could well make a difference to the finite-sample perfor-

mance of the two tests. For example, overfitting could result in a very small ûi,t+h and thus

a small û′i,t+hD̂t+h. By including the extra term, tests associated with Theorem 5 might be

more robust in small samples.

3.4 Factor Structure Estimated by PCA

An alternative to the CCE approach in Section 3.3 is to use principal components analysis

(PCA) to extract the common factors. A notable advantage of the PCA approach is that,
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unlike the CCE approach, the number of observed forecast errors does not pose an upper

bound on the number of factors. In practice, this means that we can allow for more factors

under the PCA approach.

Define the difference in the idiosyncratic forecast error variance

∆û2
t+h = n−1

n∑
i=1

∆Li,t+h − n−1
n∑
i=1

[
(λ̂′i,1f̂t+h)2 − (λ̂′i,2f̂t+h)2

]
. (30)

As before, let f̂t+h and λ̂i be the estimated factors and factor loadings obtained using

PCA estimation. Then we have the following results:

Lemma 2. Under Assumptions A-F in Bai (2003), we have

√
n

[
∆û2

t+h − n−1
n∑
i=1

E(u2
i,t+h,1 − u2

i,t+h,2 | F)
]

= n−1/2
n∑
i=1

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F) + 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2)

]
+ oP (1).

Notice that we no longer have a term involving D̂t+h. Depending on the distribution of

the idiosyncratic term, the PCA approach might yield a more efficient estimator than the

CCE approach since it does not require us to estimate this term.

From this point, all steps in the inference procedure are exactly the same as those in Sec-

tion 3.3, except that (λ̂′i,1ēt+h, λ̂′i,2ēt+h) is replaced by the PCA estimate (λ̂′i,1f̂t+h, λ̂′i,2f̂t+h)

and we set D̂t+h = 0. Specifically, in Equations (24), (25) and (27), we replace

(λ̂′i,1ēt+h, λ̂′i,2ēt+h) with the PCA estimate (λ̂′i,1f̂t+h, λ̂′i,2f̂t+h) and set D̂t+h = 0. We also

replace Bn,2 in (28) with the following

B̃n,2 =
n−1/2∑n

i=1

[
(λ̂′i,1f̂t+h)2 − (λ̂′i,2f̂t+h)2

]
2
√
n−1∑n

i=1(λ̂′i,1f̂t+hûi,t+h,1 − λ̂′i,2f̂t+hûi,t+h,2)2
, (31)

where ûi,t+h,m = ei,t+h,m − λ′i,mft+h.
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4 Empirical Application to Earnings Forecasts

To illustrate the economic insights that can be gained from our new test statistics, we next

conduct an empirical analysis that compares the accuracy of analysts’ forecasts of quarterly

earnings recorded across six large brokerage firms.

4.1 Data

Using data from the Institutional Brokers Estimate System (IBES), we examine fore-

casts of quarterly earnings per share (EPS) generated by analysts at six large brokerage

firms, namely Merrill Lynch (MERRILL), JP Morgan Chase (JPMORGAN), Credit Suisse

(FBOSTON), Goldman Sachs (GOLDMAN), Morgan Stanley (MORGAN) and Deutsche

Bank (LAWRENCE). Analysts’ forecasts are not always updated so frequently at long hori-

zons, so we focus on forecasts generated at the two-month horizon to avoid issues caused by

stale forecasts.8

Our quarterly data span the 20-year period from 2000Q1 to 2020Q1. Table 1 presents

summary statistics on the number of firms covered by each brokerage firm (Panel A) as well

as the average number of firms covered each quarter (Panel B). The total number of firms

covered by the brokerage firms in at least one quarter ranges from 1,437 (Lawrence) to 1,825

(Merrill), while the average number of firm-level quarterly EPS estimates reported by the

brokerage firms ranges from 239 (Lawrence) to 356 (Merrill).

In addition to inspecting the forecasting performance across all firms, we also use SIC

codes to assign individual firms to five industry groupings chosen to match the Fama-French

industry classification, namely Consumer, Manufacturing, High Tech, Health, and Other.

Firm numbers are highest in the Other category, followed by High Tech, Manufacturing,

Consumer, and Health.
8We calculate the forecast horizon using daily data on the announcement date (ANNDATS) and forecast

period end date (FPEDATS).
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4.2 Factor Structure in Errors and Loss Differentials

Table 2 presents results from testing for the presence of common factors in the EPS fore-

cast errors for the six brokerage firms using the growth ratio (GR) and eigenvalue (ER)

statistics of Ahn and Horenstein (2013) as well as the Onatski (2009) test (ED).9 For three

of the brokerage firms (Fboston, Goldman, and Merrill), the three tests identify a single

common factor in the forecast errors, while for a fourth (Lawrence), two of the tests suggest

a single common factor while the third (ED) uncovers three factors. For the remaining two

brokerages, the tests identify either zero (JP Morgan) or two (Morgan) common factors.

Given these findings, we next inspect whether controlling for a common factor in the

EPS forecast errors captures their correlation. To this end, Table 3 reports the average

correlation between the forecast errors without controlling for a common factor (top row

labeled 0) as well as after controlling for one or two common factors (second and third

rows), along with values of the test statistic of Pesaran (2004). Under the null that the

data are uncorrelated, this test statistic is asymptotically normally distributed. The average

cross-sectional correlation in forecast errors ranges from 0.07 (Morgan) to 0.12 (Lawrence).

Moreover, the underlying correlations are highly statistically significant with test statistics

exceeding 25, indicating very strong evidence of cross-correlations in all brokerage firms’ EPS

forecast errors.10

Controlling for exposures to a single common factor, average correlations drop to a much

narrower range from -0.01 to 0.03. While some of these test statistics remain statistically

significant–notably for Morgan Stanley–the test statistics typically come down by more than

an order of magnitude as does the average cross-correlation estimate. Accounting for a

second common factor only has a marginal effect on average correlations and test statistics,

except for Morgan Stanley whose average correlation declines from 0.03 to 0.01. We conclude
9We estimate the factors from the subset of firm-brokerage pairings with at least 40 quarterly observations,

corresponding to half of the sample period.
10Cross-sectional regressions of EPS outcomes on brokerage forecasts yield predictive R2-values in the

range 0.5-1, with an average of 0.91.
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that very little common variation remains in the forecast errors after accounting for a single

common factor and, hence, that the setup in (3) appears to provide an accurate empirical

characterization for our data.

We next explore evidence of heterogeneity in cluster loadings across industries. To the

extent that industries differ in how sensitive their earnings are to the economic cycle, we

might expect factor loadings to be clustered along industry lines with firms within a particular

industry exhibiting more similar factor loadings than firms belonging to different industries.

To see if this holds, we estimate a common factor model ẽit+h = λift+h + εit+h on the

standardized forecast errors (ẽit+h) subject to the constraint ∑N
i=1 λ

2
i = 1. Specifically, we

first demean and scale the forecast errors so they have mean zero and unit standard deviation.

Next, we estimate factors and factor loadings by PCA using the EM algorithm.

Table 4 shows the standard deviation of the estimated factor loadings across all firms

(first column) as well as within the five industry clusters. Factor loadings that are more

homogeneous within a particular industry than in the aggregate should give rise to smaller

values of the standard deviations than in the first column. We see modest evidence of this:

For all but one of the six brokerage firms, the standard deviation of the factor loadings is

smaller in three of the five industries compared to in the aggregate. Similarly, for the Con-

sumer, Manufacturing, and High Tech industries, the standard deviation of factor loadings

is smaller than the standard deviation of factor loadings in the aggregate for four of the

six brokerages. For the “Other” industry, there is typically higher heterogeneity in factor

loadings than what we see in the aggregate, indicating that this industry group includes

many heterogeneous firms.

4.3 Test Results

We next use our new cross-sectional tests of equal predictive accuracy to compare the EPS

forecasts. With six brokerage firms, we can conduct a total of 15 pair-wise comparisons.

To focus the discussion, we concentrate on four pairs, namely Morgan Stanley vs. Gold-
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man, Morgan Stanley vs. Merrill, Goldman vs. Merrill, and Lawrence (Deutsche Bank) vs.

Merrill.11

Figure 1 plots time-series of the quarterly values of the cross-sectional average test statis-

tics for the null of equal predictive accuracy. We show separate lines for the test statistics

assuming homogeneous factor loadings, (7), used to test the unconditional null in (4), and

heterogeneous factor loadings, (10), used to test the conditional null in (5). In each panel,

positive values of the test statistic indicate that the second forecaster is more accurate than

the first forecaster, while negative values suggest the reverse.

The first point to note is that the two sets of test statistics in (7) and (10) are very similar

even though they test different hypotheses and deal with factor-related shocks in different

ways. This similarity arises because the tests only differ with respect to the centering of the

terms in the denominator which turns out to be of little importance.

Next, consider the pairwise comparisons starting with Morgan Stanley vs. Goldman

(top left panel). In most quarters during our sample, the test statistic is not statistically

significant, the three exceptions being 2004Q4, 2012Q1 and 2020Q1 where Goldman’s fore-

casts are significantly more accurate than Morgan Stanley’s. Comparing Morgan Stanley vs.

Merrill (top right corner), Merrill comes out on top in two quarters (2001Q3, 2018Q4). The

pairwise comparison of Goldman vs. Merrill (bottom left) only shows one quarter (2004Q3)

with significant underperformance for Merrill relative to Goldman, while Lawrence produces

significantly more accurate earnings forecasts than Merrill (bottom right) in five quarters

(2005Q4, 2011Q1, 2013Q4, 2014Q2 and 2017Q3) and only underperforms significantly dur-

ing a single quarter (2007Q3).

An important point to bear in mind when interpreting these results is that we are in-

specting multiple test statistics–81 in this case–which introduces a multiple hypothesis testing

problem. While we do not deal with this issue here, Qu et al. (2019) develop a Sup-type

bootstrap approach that evaluates the joint statistical significance of individual test statis-
11For each of the pairwise comparisons of firm-level EPS forecasts, our analysis imposes a requirement of

at least five observations.
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tics.

We conclude the following from these results. First, the empirical results are very robust

to whether we assume homogeneous or heterogeneous factor loadings and test the null of

equal cross-sectional average predictive accuracy unconditionally or conditional on the factors

and factor loadings. Second, our results suggest that the brokerage firms produce short-term

earnings forecasts that are equally accurate during the vast majority of quarters but also

indicate that there are significant differences in predictive accuracy in a few periods.

4.4 Decomposition Results

Figure 2 presents a set of heat diagrams displaying the quarterly values of the cross-sectional

tests statistics used to test the null of equal idiosyncratic variances (23) for pairs of brokerage

firms. Each panel corresponds to a particular pair-wise comparison, using the four pairs from

Figure 1. Red colors indicate quarters in which the first forecaster has a larger idiosyncratic

error variance component than the second forecaster, while blue colors indicate the reverse.

Asterisks mark quarters in which the test statistic is significant at the 5% level, using a

two-sided test. Each diagram contains three rows showing results based on the PCA, CCE,

and cluster approaches, respectively.

First consider the comparison of Morgan Stanley vs. Goldman (top panel). The test

statistics fluctuate around zero in most quarters without being statistically significant. Using

the PCA-based test we see find two quarters in which Morgan Stanley’s idiosyncratic error

variance was significantly higher than that of Goldman while for the CCE and cluster tests

this holds in zero and one quarter, respectively. Given that we are considering 81 quarterly

test statistics, this number of rejections is lower than what we would expect by random

chance and so does not provide strong evidence that idiosyncratic error variances differ in

any significant way across the two brokerage firms. Similar results hold for the Morgan

Stanley vs. Merrill Lynch and Goldman vs. Merrill Lynch comparisons. The comparison of

the idiosyncratic error variances of Lawrence versus Merrill Lynch (bottom panel) leads to
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more rejections of the null of equal accuracy–four in total–when based on the PCA method,

with one and four rejections using the CCE and cluster methods, respectively.

In total, across the four pair-wise comparisons in Figure 2, the PCA test produces eleven

rejections of the null, while the CCE and cluster-based methods record five and nine rejec-

tions. These findings suggest that there is little overall evidence of systematic differences in

the magnitude of the idiosyncratic error variance component of analysts’ EPS estimates.

Figure 3 shows the outcome of cross-sectional comparisons of the squared bias component

in the errors of the four pairs of brokerage firms’ EPS forecasts using the test statistics in

(21), (28) and (31). Starting with the Morgan Stanley vs. Goldman comparison, we find

nine rejections of the null of equal squared biases based on the PCA test, six rejections based

on the CCE test, and a single rejection based on the cluster test. Rejection rates are lower

for the three other pairwise comparisons, with five to six rejections for the PCA-based test,

two to seven rejections for the CCE-based test, and zero or one rejections for the cluster

test.

Overall, across the four pair-wise comparisons, we find 26 rejections of the null based

on the PCA test, 22 rejections based on the CCE test, and only two rejections based on

the cluster test. Hence, for the PCA and CCE-based tests, the rejection rate is somewhat

higher than what we would expect by random chance from applying a test with a 5% size

to 324 cross-sectional comparisons (16 rejections), while clearly this is not the case for the

cluster-based test. Many of the rejections based on the PCA and CCE tests occur during the

Global Financial crisis (2008-09). During this period, factor volatility is likely to have been

higher than normal and so this could have boosted the power of the test for equal squared

biases.

There are good theoretical reasons why the PCA approach appears to have better power

in our empirical application. First, the cluster-based method is likely to be conservative

since its asymptotic size is not exact; in fact, in Theorems 3 and 4, the asymptotic size is

only bounded by the nominal size, rather than being equal to it. Second, the asymptotic
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variance of the estimates for the difference in squared biases and idiosyncratic variances can

be smaller under PCA than under CCE because, as we noted after Lemma 2, the PCA

estimator tends to be more efficient than the CCE, thus increasing its relative power.

The empirical results displayed in Figures 2 and 3 show notable differences across the tests

of equal idiosyncratic variance versus equal squared biases. The Monte Carlo simulations

reported in the next section suggest that the test for equal idiosyncratic error variances can

be quite conservative which is consistent with the smaller number of rejections of the null

for this test compared to the test for equal squared error bias.

The test statistics plotted in Figures 1-3 provide evidence on the statistical significance

of differences in squared error loss, idiosyncratic variances, and squared biases. They do not

show how much of the variation in differences in squared error loss is explained by differences

in the idiosyncratic variance and squared bias components. To address this point, Table 5

reports the mean and variance of the contributions from these components, both measured

relative to the total loss differential. Specifically, defining the cross-sectional sample mo-

ments

bias2
t+h = n−1

n∑
i=1

[
(λ̂′i,1f̂t+h)2 − (λ̂′i,2f̂t+h)2

]
,

4u2
t+h = n−1

n∑
i=1

(
û2
i,t+h,1 − û2

i,t+h,2

)
,

the columns labeled mean ratio in Table 5 report the time-series averages

100
81

∑2020Q1
t=2000Q14u2

t+h∑2020Q1
t=2000Q14Lt+h

 , 100
81

2020Q1∑
t=2000Q1

∑2020Q1
t=2000Q1 bias

2
t+h∑2020Q1

t=2000Q14Lt+h

 ,
for the idiosyncratic variance (top panel) and squared bias (bottom panel) components,

respectively. As before, 4Lt+h = n−1∑n
i=1 ∆Li,t+h|t. From (11), these measures can be

positive or negative but sum to 100.
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Similarly, columns labeled variance ratio report the following

V ar(4u2
t+h)

V ar(4Lt+h)
,

V ar(bias2
t+h)

V ar(4Lt+h)
,

where

V ar(4Lt+h) = 1
80

2020Q1∑
t=2000Q1

(
4Lt+h −4Lt+h

)2
,

V ar(4u2
t+h) = 1

80

2020Q1∑
t=2000Q1

(
4u2

t+h −4u2
t+h

)2
,

V ar(bias2
t+h) = 1

80

2020Q1∑
t=2000Q1

(
bias2

t+h −4bias2
t+h

)2
.

and 4Lt+h = (1/81)∑2020Q1
t=2000Q14Lt+h, 4u2

t+h = (1/81)∑2020Q1
t=2000Q14u2

t+h, and 4bias2
t+h =

(1/81)∑2020Q1
t=2000Q14bias2

t+h. These variance ratios do not sum to 100 because of the omitted

covariance term.

The mean ratios of the four pairwise comparisons reported in Table 5 are generally

notably higher for differences in the idiosyncratic variances than for differences in squared

biases, with the former falling within ranges of 40-87%, 1-95%, and 85-96% for the PCA,

CCE, and cluster methods, respectively. Variance ratios are also higher–typically by a large

margin–for differences in the idiosyncratic variance component than for differences in the

squared biases for all but one pairwise comparison (Morgan Stanley vs. Goldman, CCE

method). Variation in the idiosyncratic variance component is thus generally substantially

more important to explaining squared error loss differences between brokerage firms’ earnings

forecasts than variation in the squared bias term.

These results show that, on average, differences in idiosyncratic error variances account

for far more of squared error loss differences in brokerage firms’ EPS forecasts than the

squared bias component. Differences in brokerage firms’ quarterly EPS forecast accuracy

therefore appear not so much to be driven by differences in their ability to predict common
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factors, i.e., their skills as “generalists”. Rather, differences in predictive accuracy tend to be

driven by differences in brokerage firms’ ability to reduce uncertainty about the idiosyncratic

component of EPS as this relates to their specialist knowledge of individual firm performance.

The main exception to this finding occurs around the Global Financial Crisis (2008-09)

during which the squared bias term becomes more important in explaining differences in

squared-error losses across brokerages, particularly for the PCA-based test.

5 Monte Carlo Simulations

Our final section reports the outcome of a set of Monte Carlo simulations which address the

finite-sample properties of our tests.

5.1 Setup

Our baseline simulations use a simple setup designed to satisfy the assumptions of the three

different estimation procedures (clustering, CCE and PCA) which allows us to more directly

compare their performance. First, we generate factors f1,t and f2,t as i.i.d variables from the

standard normal distribution. Next, we compute realized outcomes as yit+h = f1,t+f2,t+εit+h,

while forecasts are generated as ŷit+h|t,1 = f1,t + ξit+h,1 and ŷit+h|t,2 = f2,t + ξit+h,2, where

εit+h, ξit+h,1 and ξit+h,2 are mutually independent i.i.d. N(0, σ2) draws. We calibrate σ2 to

yield a value for the predictive power ρ2 in a certain range, where for m ∈ {1, 2},

ρ2 = 1− E(yit+h − ŷit+h|t,m)2

Ey2
it+h

.

Because ρ2 = 1/(2 + σ2), ρ2 ∈ (0, 1/2). We set n ∈ {10, 25, 50, 100, 200, 1000} and ρ2 ∈

{0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.45} as well as T = 80. All results are based on 2000 random

samples.

Initially we consider the performance in a typical time period (t = 3) and note that results

for other time periods would be similar, given the i.i.d. setting. Section 5.4.2 introduces
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breaks to the data generating process and so considers both pre- and post-break performance.

Because we are testing a random hypothesis, the hypothesized value is not zero but a

random quantity that depends on the realization of the factors and factor loadings. For this

reason, and to simplify the presentation of size and power results, we invert our test statistics

to form 95% confidence intervals for E(∆Lt+h | F) and report the coverage probabilities.

5.2 Baseline results

Table 6 reports results on the procedure for conducting inference on E(∆Lt+h | F) = 0

described in Section 2.5. Coverage probabilities are generally quite accurate although there

is some undercoverage for very small values of n, suggesting that the test might slightly

overreject in such cases.

Next, we invert the procedures described in Section 3 to construct 95% confidence in-

tervals for the squared error loss decompositions based on the clustering, CCE, and PCA

methods. Table 7 reports results for the average difference in the squared bias component

n−1∑n
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]
while results for the average difference in the idiosyncratic

variance component n−1∑E(u2
i,t+h,1 − u2

i,t+h,2 | F) are reported in Table 8.

For the tests applied to the squared bias terms (Table 7), the coverage probability gen-

erally improves with the sample size n, with exception of the PCA method when ρ2 is very

small.12 In larger samples, the coverage probability for the difference in squared bias is rel-

atively stable as a function of ρ2, while for smaller values of n, the tests are under-sized for

small values of ρ2 and oversized for large values of ρ2. Conversely, the confidence intervals

for the difference in variances (Table 8) tend to be more conservative when ρ2 is large, with

coverage probabilities exceeding 99%. To understand this finding, note that ρ2 = 1/(2 + σ2)

and inference on the difference in variance relies on variation in uit+h|m which is 2σ2 in this

case. Large values of ρ2 are therefore associated with smaller variation in uit+h|m and so the

higher-order terms in the asymptotic expansion tend to be more pronounced which means
12A reason for this finding is that for n = 1000 and T = 80, the two dimensions of the sample size are not

very balanced and the accuracy of the PCA method is determined by min{n, T}.
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that the first-order asymptotic approximation underlying the inference procedure is generally

less accurate.

Overall, the procedure for testing differences in idiosyncratic variances has better coverage

than its counterpart for testing differences in the squared bias component. This might be

explained by the greater robustness of the test for equal idiosyncratic variances highlighted

earlier. Moreover, the size distortion results suggest that tests for equal squared biases are

likely to have more power than tests for equal idiosyncratic error variances.

5.3 Decompositions with heterogeneous factor loadings

We next consider various extensions to the baseline simulation setup. To keep the presenta-

tion short, all results are reported in a set of Appendix tables.

5.3.1 Heterogeneous factor loadings across Clusters

Our first extension allows factor loadings to have a cluster structure. Specifically, we partition

the cross-section of n units into five equal-sized clusters and set ŷit+h|t,1 = f1,tλk(i) + ξit+h,1,

where λk(i) ∈ {0, 0.5, 1, 1.5, 2} and k(i) is the cluster that contains unit i. Similarly, we set

ŷit+h|t,2 = f2,tλk(i) + ξit+h,2 with λk(i) ∈ {0, 0.5, 1, 1.5, 2}. Since each cluster contains n/5

units, the clusters are very small for the smallest values of n, i.e., only two and five units

per cluster for n = 10 and n = 25, respectively.

Results from this setup are reported in Appendix Tables A1 and A2. For inference on

differences in the squared bias (Table A1), the clustering method has a substantial under-

coverage for small values of n but performs notably better with larger sample sizes. This is

as expected since the clustering method uses the cluster-wise average to estimate the factor

structure and the size of each cluster is n/5. The CCE method mostly has sufficient coverage

probability while the PCA method tends to be very conservative with coverage probabilities

at or above 99%. For inference on differences in the error variance (Table A2), all three meth-

ods perform reasonably well across various sample sizes, although the clustering and CCE
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approaches tend to be somewhat conservative while, conversely, the PCA method overrejects

if n is very small (n = 10).

5.3.2 General heterogeneous factor loadings

Our second extension applies a more general setting in which factor loadings are neither

constant, nor have a cluster structure as we generate factor loadings as the absolute value

of a standard normal distribution, i.e., λ1,i and λ2,i are i.i.d |N(0, 1)|. Using absolute values

ensures that E(λ1,i) = E(λ2,i) is positive as required by the CCE method (Assumption 3).

Conversely, the clustering method is no longer valid in this setting and so we omit results for

this method. Using these heterogeneous factor loadings, we set yit+h = λ1,if1,t+λ2,if2,t+εit+h

and generate forecasts as ŷit+h|t,1 = λ1,if1,t + ξit+h,1 and ŷit+h|t,2 = λ2,if2,t + ξit+h,2, where

εit+h, ξit+h|1 and ξit+h|2 are again drawn independently with mean zero and variance σ2.

Appendix Table A3 shows that the coverage of the CCE method is often better than that of

the PCA method for inference on differences in the squared bias with the latter having issues

with undercoverage for small values of n; both methods provide sufficient overall coverage

but tend to be conservative for inference on differences in variances, particularly when ρ2 is

large.

5.4 Variation in the factor structure

5.4.1 Three factors

The key reason for using the PCA method is that once the number of factors exceeds

two, PCA is the only valid method for handling the general case with heterogeneous

factor loadings.13 We illustrate this point in a setting with three factors as we set

yit+h = λ1,if1,t+λ2,if2,t+λ3,if3,t+εit+h and generate the forecasts as ŷit+h|t,1 = λ1,if1,t+ξit+h,1

and ŷit+h|t,2 = λ2,if2,t + ξit+h,2, where all variables (including all factors and factor loadings)
13Another reason for using the PCA method is that it remains asymptotically valid even if E(λi) = 0,

whereas the CCE method would fail in this setting.
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are generated as before.

As shown in Appendix Table A4, the 95% coverage probability for the CCE method

can be as low as 40% for comparing the squared bias and as low as 59% for comparing

variances when n = 1000 and ρ2 = 0.45. This phenomenon arises because we only observe

two variables (two forecast errors) and the CCE method can handle at most two factors

in our setup. With more than two factors, the CCE method does not guarantee consistent

estimation of the factor structure. Since we are studying the average across n units, the

problem becomes more pronounced as n increases.

5.4.2 Breaks in the number of factors

We next consider a setting in which the number of factors changes as represented by a

discrete break to the factor structure: yit+h = λ1,if1,t + λ2,if2,t + λ3,if3,t1{t>T/2} + εit+h. In

this model, the third factor (f3,t) only shows up in the second half of the sample. All other

details remain the same. Instability in the number of factors is empirically plausible and has

been studied in Cheng et al. (2016).

Appendix Table A5 reports coverage probabilities for 95% confidence intervals based on

the PCA and CCE methods. We consider two time periods: one before the break (t = 3), the

other after the break (t = T − 3).14 Overall, the PCA method maintains sufficient coverage

probability while the CCE method can suffer from severe undercoverage. Again, the reason

is that when there are three factors, CCE cannot consistently estimate the factor structure

from two observed variables. The performance of the PCA approach is similar before and

after the break. Conversely, the CCE method performs worse after the break than before,

most likely because there are only two factors before the break, consistent with a setting in

which the CCE approach is valid.
14We conduct the PCA analysis for the full sample using three factors because there are three spiked

eigenvalues in the data matrix for the full sample.
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5.5 Linex Loss

Table A6 reports 95% confidence intervals for testing the null of equal conditional expected

loss (5) using linex loss:

L(eit+h) = 1
a2 [exp(aeit+h)− aeit+h − 1] (32)

where a = 1. The data generating process is identical to that in the baseline case used to

construct Table 6. Coverage probabilities are very similar to those in Table 6, with a slight

undercoverage for small values of n and coverage approximating 95% as n grows larger.

5.6 Conditional heteroskedasticity

We now conduct a set of simulations in which the data generating process allows for condi-

tional heteroskedasticity modeled through a simple ARCH process of the form:

ft = σtεt,

where σ2
t = (1− r) + rf 2

t−1 with r = 0.5. Notice that Eσ2
t = 1.

Results are reported in Appendix Tables A7 and A8. Compared to the baseline setup

in Tables 7 and 8, the results do not change in any material ways, showing that conditional

heteroskedasticity in the innovations of the data generating process need not have a material

effect on the performance of our cross-sectional tests for equal predictive accuracy.

5.7 Relation to empirical results

In our empirical analysis, the PCA and CCE methods lead to notably more rejections of the

null of equal squared biases than the clustering method which rarely rejects the null. To

help explain these results, we slightly modify the simulation setup so as to match the high

cross-sectional R2 values found in our application (0.9 on average) and allow for broad het-
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erogeneity in factor loadings. We accomplish this by adding a third factor to the model

and letting factor loadings be random: yit+h = λi1f1,t + λi2f2,t + λi3f3,t + εit+h, where

f1,t, f2,t, f3,t ∼ iidN(0, 1), λi1 ∼ iidN(0, V ), λi2, λi3 ∼ iidN(1, 1), and εi,t+h ∼ iidN(0, σ2).

The two forecasts are generated as ŷit+h|t,1 = λi1f1,t + λi2f2,t and ŷit+h|t,2 = λi1f1,t + λi3f3,t,

respectively, with forecast errors eit+h,1 = λi3f3,t + εit+h and eit+h,2 = λi2f2,t + εit+h.

Normally distributed factor loadings is likely to cause the biggest problem for the

clustering method which approximates heterogeneity in factor loadings by means of a

small number of discrete values. Such heterogeneity is particularly important if the

fraction of the variation in forecast errors explained by the omitted factors is large.

Here, this is given by ρ2
e = 2/(2 + σ2) and we vary σ to obtain a range of values

ρ2
e ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. To mimic the cross-sectional R2, note that for each

t, 1−E[(yit+h− ŷit+h|t,1)2|f1,t, f2,t, f3,t]/E[y2
it+h|f1,t, f2,t, f3,t] = (V f 2

1,t + 2f 2
2,t)/(V f 2

1,t + 2f 2
2,t +

2f 2
3,t+σ2). Matching the empirical evidence, we set this number to 0.9 for f 2

1,t = f 2
2,t = f 3

3,t = 1

by choosing an appropriate value of V .

Simulation results that use this setup are reported in Appendix Table A9. When the

omitted factors matter less for the variation in forecast errors (small ρ2
e), the PCA and

clustering methods generate tighter confidence intervals than the CCE approach. However,

as the common factors gain in importance (high ρ2
e), the PCA approach produces notably

narrower confidence intervals than the clustering method, with the CCE approach in the

middle. This is consistent with the clustering approach having weaker power and so helps

explain the far lower rejection rate observed empirically for this estimator for the equality

of squared bias tests in situations with substantial cross-sectional heterogeneity in factor

loadings.
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6 Conclusion

This paper develops new methods for testing the null of equal predictive accuracy on a

single cross-section containing pairs of forecasts of multiple outcome variables. In settings

where the cross-sectional dependence in forecast errors can be captured by a common factor

structure, we show that it is possible to conduct formal inference about equal predictive

accuracy and develop a set of test statistics. In particular, we show that the null of equal

predictive accuracy can be conducted in settings with a large cross-sectional dimension if

either (i) factor loadings are homogeneous across units so that the effect of common factors

on forecast errors cancels out in squared error loss differentials; or (ii) we condition on factor

realizations and conduct a test of equal predictive accuracy, given these factors.

We illustrate our tests in an empirical application that compares the accuracy of analyst

short-term earnings forecasts across six brokerage firms, using a sample covering hundreds

of individual firms. While our cross-sectional tests fail to reject the null of equal predictive

accuracy for most quarters, we do identify individual quarters with significant differences

among pairs of brokers. Moreover, our empirical results suggest that differences in the

variances of the idiosyncratic error component tend to be more important than differences

in squared biases for explaining variation in differences in brokerage firms’ earnings per share

squared-error loss performance.
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A Proofs

This section presents proofs of the theoretical results in the main body of our paper.

A.1 Theorem 1

Proof. Using (6), we have

∆Li,t+h|t−E(∆Li,t+h|t) = (u2
i,t+h,1−u2

i,t+h,2)−E[u2
i,t+h,1−u2

i,t+h,2]+2(ui,t+h,1−ui,t+h,2)λ′ift+h.

Hence, conditional on F , {∆Li,t+h|t−E(∆Li,t+h|t)}ni=1 is independent across i with mean

zero. By Assumption 1, the sequence {∆Li,t+h|t−E(∆Li,t+h|t)}nt
i=1 conditional on F satisfies

the Lyapunov condition. Hence, a standard argument yields

n−1/2∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t)]√

n−1∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t)]2

d→ N(0, 1).

Under the null that n−1∑n
i=1 E(∆Li,t+h|t) = 0, we have

n−1/2∑n
i=1 ∆Li,t+h|t√

n−1∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t)]2

d→ N(0, 1).

The result now follows by noticing that n−1∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t)]2 ≤

n−1∑n
i=1(∆Li,t+h|t)2.
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A.2 Theorem 2

Proof. Using (8), we have

∆Li,t+h|t−E(∆Li,t+h|t | F) = (u2
i,t+h,1−u2

i,t+h,2)−E[u2
i,t+h,1−u2

i,t+h,2 | F ]+2(ui,t+h,1−ui,t+h,2)λ′ift+h.

Hence, conditional on F , {∆Li,t+h|t − E(∆Li,t+h|t | F)}ni=1 is independent across i with

mean zero. By Assumption 2, the sequence {∆Li,t+h|t − E(∆Li,t+h|t | F)}nt
i=1 conditional on

F satisfies the Lyapunov condition. Hence, a standard argument yields

n−1/2∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]√

n−1∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]2

d→ N(0, 1).

Under the null that n−1∑n
i=1 E(∆Li,t+h|t | F) = 0, we have

n−1/2∑n
i=1 ∆Li,t+h|t√

n−1∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]2

d→ N(0, 1).

The result now follows by noticing that n−1∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]2 ≤

n−1∑n
i=1(∆Li,t+h|t)2.

A.3 Theorem 3

Proof. Start by noticing that

√
nk

∆u2
t+h,k − n−1

k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F)


= n
−1/2
k

∑
i∈Hk

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F) + 2(λ′1ft+hui,t+h,1 − λ′2ft+hui,t+h,2)

]

+ n
−1/2
k

n−1
k

∑
i∈Hk

ui,t+h,2

2

− n−1/2
k

n−1
k

∑
i∈Hk

ui,t+h,1

2

.
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By a CLT,

n
−1/2
k

n−1
k

∑
i∈Hk

ui,t+h,2

2

− n−1/2
k

n−1
k

∑
i∈Hk

ui,t+h,1

2

= OP (n−3/2
k ) = oP (1).

Therefore, ∆u2
t+h,k is a √nk-consistent estimator for n−1

k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F). By

the same CLT argument, it follows that

√
nk

∆u2
t+h,k − n−1

k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F)


= n
−1/2
k

∑
i∈Hk

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F) + 2(λ′1ft+hui,t+h,1 − λ′2ft+hui,t+h,2)

]
+oP (1)

is asymptotically normal and that the variance of√nk
(
∆u2

t+h,k − n−1
k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F)
)

can be estimated by

V̂ := n−1
k

∑
i∈Hk

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F) + 2(λ′1ft+hui,t+h,1 − λ′2ft+hui,t+h,2)

]2
.

Recall our estimate V̄ := n−1
k

∑
i∈Hk

(∆Li,t+h − ∆Lt+h,k)2 with ∆Lt+h,k =

n−1
k

∑
i∈Hk

∆Li,t+h. It remains to show that V̂ = V̄ + oP (1). By (8) and (9), we have

∆Li,t+h −∆Lt+h,k

=
[
u2
i,t+h,1 − u2

i,t+h,2 + 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2)
]

− n−1
k

∑
j∈Hk

[(
u2
j,t+h,1 − u2

j,t+h,2

)
+ 2(λ′j,1ft+huj,t+h,1 − λ′j,2ft+huj,+ht,2)

]

= (u2
i,t+h,1 − u2

i,t+h,2)− E(u2
i,t+h,1 − u2

i,t+h,2 | F) + 2(λ′1ft+hui,t+h,1 − λ′2ft+hui,t+h,2) + hn,1 + hn,2,

where hn,1 = E(u2
i,t+h,1 − u2

i,t+h,2 | F) − n−1
k

∑
j∈Hk

(u2
j,t+h,1 − u2

j,t+h,2) and hn,2 =

−2n−1
k

∑
j∈Hk

(λ′j,1ft+huj,t+h,1 − λ′j,2ft+huj,+ht,2). Clearly, by a LLN, hn,1 = oP (1) and

hn,2 = oP (1). By the elementary inequality
∣∣∣∣√∑(ai + bi)2 −

√∑
a2
i

∣∣∣∣ ≤ √∑
b2
i , we have
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that ∣∣∣∣√V̂ −√V̄ ∣∣∣∣ ≤ √n−1
k

∑
i∈Hk

(hn,1 + hn,2)2 = |hn,1 + hn,2| = oP (1).

Thus, V̂ = V̄ + oP (1). The proof is complete.

A.4 Corollary 1

Proof. The result follows once we notice that

√
n

(
K∑
k=1

nk
n

∆u2
t+h,k − n−1

n∑
i=1

E(u2
i,t+h,1 − u2

i,t+h,2 | F)
)

=
√
n

K∑
k=1

nk
n

∆u2
t+h,k − n−1

k

∑
i∈Hk

E(u2
i,t+h,1 − u2

i,t+h,2 | F)


=
K∑
k=1

nk√
n

n−1
k

∑
i∈Hk

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F)

]
+OP (n−1

k )


= n−1/2

n∑
i=1

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F)

]
+OP (n−1/2).

A.5 Theorem 4

Proof. By equation (15), we have

√
n

[
K∑
k=1

nk
n

(e2
1,k,t+h − e2

2,k,t+h)−
K∑
k=1

nk
n

(
(λ′1,(k)ft+h)2 − (λ′2,(k)ft+h)2

)]

= n−1/2
K∑
k=1

nk


n−1

k

∑
i∈Hk

ui,t+h,1

2

−

n−1
k

∑
i∈Hk

ui,t+h,2

2


+ 2n−1/2
n∑
i=1

(
λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2

)
.

Again as in the proof of Theorem 3, we can show that
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n−1/2∑K
k=1 nk

{(
n−1
k

∑
i∈Hk

ui,t+h,1
)2
−
(
n−1
k

∑
i∈Hk

ui,t+h,2
)2
}

= oP (1), and so

√
n

[
K∑
k=1

nk
n

(e2
1,k,t+h − e2

2,k,t+h)− n−1
n∑
i=1

[
(λ′i,1ft+h)2 − (λ′i,2ft+h)2

]]

= 2n−1/2
n∑
i=1

(
λ′i,1ft+hui,+ht,1 − λ′i,2ft+hui,t+h,2

)
+ oP (1).

The rest of the proof follows by a CLT as in the proof of Theorem 3.

A.6 Lemma 1

Proof. Since we can write fs+h = (λ̄λ̄′)−1λ̄(ēs+h − ūs+h), we have ei,s+h = λ′i(λ̄λ̄′)−1λ̄ēs+h +

ui,s+h − λ′i(λ̄λ̄′)−1λ̄ūs+h. It is not difficult to see that

λ̂′i =
 T∑
s+h=1

[λ′i(λ̄λ̄′)−1λ̄ēs+h + ui,s+h − λ′i(λ̄λ̄′)−1λ̄ūs+h]ē′s+h

 T∑
s+h=1

ēs+hē
′
s+h

−1

= λ′i(λ̄λ̄′)−1λ̄+
 T∑
s+h=1

ui,s+hē
′
s+h

 T∑
s+h=1

ēs+hē
′
s+h

−1

− λ′i(λ̄λ̄′)−1λ̄

 T∑
s+h=1

ūs+hē
′
s+h

 T∑
s+h=1

ēs+hē
′
s+h

−1

and thus

λ̂′iēt+h = λ′ift+h + ξi,t+h + εi,t+h + ζi,t+h,

where ξi,t+h = λ′i(λ̄λ̄′)−1λ̄ūt+h, εi,t+h =
(∑T

s+h=1 ui,s+hē
′
s+h

) (∑T
s+h=1 ēs+hē

′
s+h

)−1
ēt+h and

ζi,t+h = −λ′i(λ̄λ̄′)−1λ̄
(∑T

s+h=1 ūs+hē
′
s+h

) (∑T
s+h=1 ēs+hē

′
s+h

)−1
ēt+h.

Next, observe that

n−1/2
n∑
i=1

[(λ̂′i,1ēt+h)2 − (λ′i,1ft+h)2]

= n−1/2
n∑
i=1

(ξi,t+h,1 + εi,t+h,1 + ζi,t+h,1)2 + 2n−1/2
n∑
i=1

(ξi,t+h,1 + εi,t+h,1 + ζi,t+h,1)λ′i,1ft+h.
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and

n−1/2
n∑
i=1

ξi,t+h,1λ
′
i,1ft+h = n−1/2ū′t+hλ̄

′(λ̄λ̄′)−1
(

n∑
i=1

λi,1λ
′
i,1

)
ft+h.

Therefore, we have

n−1/2
n∑
i=1

[(λ̂′i,1ēt+h)2 − (λ′i,1ft+h)2]

= n−1/2ū′t+hλ̄
′(λ̄λ̄′)−1

(
n∑
i=1

λi,1λ
′
i,1

)
ft+h

+ n−1/2
n∑
i=1

(ξi,t+h,1 + εi,t+h,1 + ζi,t+h,1)2 + 2n−1/2
n∑
i=1

(εi,t+h,1 + ζi,t+h,1)λ′i,1ft+h.

The rest of the proof proceeds in four steps, bounding different components in the above

display.

Step 1: show that n−1/2∑n
i=1 (εi,t+h,1 + ζi,t+h,1)λ′i,1ft+h = oP (1).

We observe that

n−1/2
n∑
i=1

ζi,t+h,1λ
′
i,1ft+h

= −n−1/2ē′t+h

 T∑
s+h=1

ēs+hē
′
s+h

−1 T∑
s+h=1

ēs+hū
′
s+h

 λ̄′(λ̄λ̄′)−1
(

n∑
i=1

λi,1λ
′
i,1

)
ft+h (33)

and

n−1/2
n∑
i=1

εi,t+h,1λ
′
i,1ft+h = n−1/2f ′t+h

 T∑
s+h=1

(
n∑
i=1

λi,1ui,s+h,1

)
ē′s+h

 T∑
s+h=1

ēs+hē
′
s+h

−1

ēt+h.

(34)

Recall that ēs+h = λ̄′fs+h + ūs+h. Since λ̄λ̄′ has eigenvalues bounded away from zero and

infinity and fs+h has non-trivial variance, it follows that
(∑T

s+h=1 ēs+hē
′
s+h

)−1
= OP (T−1).

Moreover,
T∑

s+h=1
ēs+hū

′
s+h = λ̄′

T∑
s+h=1

fs+hū
′
s+h +

T∑
s+h=1

ūs+hū
′
s+h. (35)

Notice that ∑T
s+h=1 fs+hū

′
s+h = n−1∑n

i=1(∑T
s+h=1 fs+hu

′
i,s+h) and T−1/2∑T

s+h=1 fs+hu
′
i,s+h
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has mean zero with bounded variance and is independent across i conditional on {fs+h}Ts+h=1.

Therefore, ∑T
s+h=1 fs+hū

′
s+h = OP (

√
T/n). Since E∑T

s+h=1 ūs+hū
′
s+h = O(T/n), we have∑T

s+h=1 ūs+hū
′
s+h = O(T/n). By (35), we have ∑T

s+h=1 ēs+hū
′
s+h = OP (

√
T/n+T/n). There-

fore, (33) implies

n−1/2
n∑
i=1

ζi,t+h,1λ
′
i,1ft+h

= −n−1/2ē′t+h

 T∑
s+h=1

ēs+hē
′
s+h

−1 T∑
s+h=1

ēs+hū
′
s+h

 λ̄′(λ̄λ̄′)−1
(

n∑
i=1

λi,1λ
′
i,1

)
ft+h

= n−1/2OP (1) ·OP (T−1) ·OP (
√
T/n+ T/n) ·OP (1) ·OP (n) ·OP (1)

= OP (n−1/2 + T−1/2) = oP (1). (36)

We observe that

T∑
s+h=1

(
n∑
i=1

λi,1ui,s+h,1

)
ē′s+h

=
T∑

s+h=1

n∑
i=1

λi,1ui,s+h,1
(
ū′s+h + f ′s+hλ̄

)

=
T∑

s+h=1

n∑
i=1

λi,1ui,s+h,1ū
′
s+h +

T∑
s+h=1

n∑
i=1

λi,1ui,s+h,1f
′
s+hλ̄

(i)=
T∑

s+h=1

n∑
i=1

λi,1ui,s+h,1ū
′
s+h +OP (

√
nT )

= OP


√√√√√ T∑
s+h=1

(
n∑
i=1

λi,1ui,s+h,1

)2

×

√√√√ T∑
s+h=1

‖ūs+h‖2

+OP (
√
nT )

(ii)= OP

(√
Tn×

√
T/n

)
+OP (

√
nT ) = OP

(√
nT (1 +

√
T/n)

)
,

where (i) and (ii) follow by Assumption 3. Hence, by (34), we have

n−1/2
n∑
i=1

εi,t+h,1λ
′
i,1ft+h

= n−1/2f ′t+h

 T∑
s+h=1

(
n∑
i=1

λi,1ui,s+h,1

)
ē′s+h

 T∑
s+h=1

ēs+hē
′
s+h

−1

ēt+h
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= n−1/2 ·OP (1) ·OP

(√
nT (1 +

√
T/n)

)
·OP (T−1) ·OP (1)

= OP (T−1/2 + n−1/2) = oP (1). (37)

By (36) and (37), we have proved the claim in Step 1.

Step 2: show that n−1/2∑n
i=1 ξ

2
i,t+h,1 = oP (1).

Clearly Eūt+hū′t+h = O(n−1) and thus ūt+hū′t+h = OP (n−1). It follows that

n∑
i=1

ξi,t+hξ
′
i,t+h =

n∑
i=1

λ′i(λ̄λ̄′)−1λ̄ūt+hū
′
t+hλ̄

′(λ̄λ̄′)−1λi

=
n∑
i=1

trace
(
ūt+hū

′
t+hλ̄

′(λ̄λ̄′)−1λiλ
′
i(λ̄λ̄′)−1λ̄

)
= trace

(
ūt+hū

′
t+hλ̄

′(λ̄λ̄′)−1
[
n∑
i=1

λiλ
′
i

]
(λ̄λ̄′)−1λ̄

)

= trace
(
OP (n−1) ·OP (1) ·OP (n) ·OP (1)

)
= OP (1).

Therefore, n−1/2∑n
i=1 ξ

2
i,t+h,1 = OP (n−1/2) = oP (1).

Step 3: show that n−1/2∑n
i=1 ε

2
i,t+h,1 = oP (1).

Let qn,1 =
(∑T

s+h=1 ēs+hē
′
s+h

)−1
ēt+h. Then

εi,t+h =
 T∑
s+h=1

ui,s+hē
′
s+h

 qn,1 =
T∑

s+h=1
ui,s+hū

′
s+hqn,1 +

T∑
s+h=1

ui,s+hf
′
s+hλ̄qn,1.

Therefore,

n−1/2
n∑
i=1
‖εi,t+h‖2 ≤ 2n−1/2

n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hū

′
s+hqn,1

∥∥∥∥∥∥
2

+ 2n−1/2
n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hf

′
s+hλ̄qn,1

∥∥∥∥∥∥
2

.

From the previous argument, ‖qn,1‖ = OP (T−1). It follows that

n−1/2
n∑
i=1
‖εi,t+h‖2 = OP

T−2n−1/2

 n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hū

′
s+h

∥∥∥∥∥∥
2

+
n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hf

′
s+h

∥∥∥∥∥∥
2

 .
(38)
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We observe that

trace
 n∑
i=1

 T∑
τ+h=1

ūτ+hu
′
i,τ+h

 T∑
s+h=1

ui,s+hū
′
s+h


= trace

 T∑
s+h=1

T∑
τ+h=1

ūτ+h

(
n∑
i=1

u′i,τ+hui,s+h

)
ū′s+h


=

T∑
s+h=1

T∑
τ+h=1

(
n∑
i=1

u′i,τ+hui,s+h

)
ū′s+hūτ+h

≤

√√√√√ T∑
s+h=1

T∑
τ+h=1

(
n∑
i=1

u′i,τ+hui,s+h

)2

×

√√√√ T∑
s+h=1

T∑
τ+h=1

(ū′s+hūτ+h)2.

Notice that

E
T∑

s+h=1

T∑
τ+h=1

(
n∑
i=1

u′i,τ+hui,s+h

)2

=
T∑

s+h=1

T∑
τ+h=1

n∑
i1=1

n∑
i2=1

Eu′i1,τ+hui1,s+hu
′
i2,τ+hui2,s+h

=
T∑

s+h=1

T∑
τ+h=1

n∑
i=1

E(u′i,τ+hui,s+h)2 +
T∑

s+h=1

T∑
τ+h=1

∑
i1 6=i2

Eu′i1,τ+hui1,s+hu
′
i2,τ+hui2,s+h

(i)=
T∑

s+h=1

T∑
τ+h=1

n∑
i=1

E(u′i,τ+hui,s+h)2 +
T∑

s+h=1

T∑
τ+h=1

∑
i1 6=i2

Eu′i1,τ+hui1,s+hEu
′
i2,τ+hui2,s+h

≤
T∑

s+h=1

T∑
τ+h=1

n∑
i=1

E(u′i,τ+hui,s+h)2 +
T∑

s+h=1

T∑
τ+h=1

(
n∑
i=1

Eu′i,τ+hui,s+h

)2

= O(nT 2) +O

n2
T∑

s+h=1

T∑
τ+h=1

‖γn(s, τ)‖2


(ii)= O(nT 2) +O

n2
T∑

s+h=1

T∑
τ+h=1

‖γn(s, τ)‖
 (iii)= O(nT 2) +O(n2T ),

where (i) follows by the independence of ui,s across i, (ii) follows by maxs maxτ ‖γn(s, τ)‖ ≤

M and (iii) follows by Assumption 4. On the other hand, we have

T∑
s+h=1

T∑
τ+h=1

(ū′s+hūτ+h)2 ≤
T∑

s+h=1

T∑
τ+h=1

‖ūs+h‖2 · ‖ūτ+h‖2 =
 T∑
s+h=1

‖ūs+h‖2

2

= OP (T 2n−1).
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The above three displays imply that

trace
 n∑
i=1

 T∑
τ+h=1

ūτ+hu
′
i,τ+h

 T∑
s+h=1

ui,s+hū
′
s+h



≤

√√√√√ T∑
s+h=1

T∑
τ+h=1

(
n∑
i=1

u′i,τ+hui,s+h

)2

×

√√√√ T∑
s+h=1

T∑
τ+h=1

(ū′s+hūτ+h)2

=
√
OP (nT 2) +OP (n2T )×

√
OP (T 2n−1) = OP

(
T 3/2(n1/2 + T 1/2)

)
.

Since ∑n
i=1

(∑T
τ+h=1 ēτ+hu

′
i,τ+h

) (∑T
s+h=1 ui,s+hē

′
s+h

)
is positive semi-definite, we have

n∑
i=1

 T∑
τ+h=1

ūτ+hu
′
i,τ+h

 T∑
s+h=1

ui,s+hū
′
s+h

 = OP

(
T 3/2(n1/2 + T 1/2)

)
.

By a CLT, we have
n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hf

′
s+h

∥∥∥∥∥∥
2

= OP (nT ).

The above two displays and (38) imply

n−1/2
n∑
i=1
‖εi,t+h‖2

= OP

T−2n−1/2

 n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hū

′
s+h

∥∥∥∥∥∥
2

+
n∑
i=1

∥∥∥∥∥∥
T∑

s+h=1
ui,s+hf

′
s+h

∥∥∥∥∥∥
2



= OP

(
T−2n−1/2

[
OP

(
T 3/2(n1/2 + T 1/2)

)
+OP (nT )

])
= OP

(
n−1/2 + T−1/2 + n1/2T−1

) (i)= oP (1),

where (i) follows by n/T 2 = o(1).

Step 4: show that n−1/2∑n
i=1 ζ

2
i,t+h,1 = oP (1).

Let qn,2 = (λ̄λ̄′)−1λ̄
(∑T

s+h=1 ūs+hē
′
s+h

) (∑T
s+h=1 ēs+hē

′
s+h

)−1
ēt+h. Then ζi,t+h = −λ′iqn,2.
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It follows that

n−1/2
n∑
i=1
‖ζi,t+h‖2 = n−1/2

n∑
i=1

q′n,2λiλ
′
iqn,2 ≤ OP

(
n1/2‖qn,2‖2

)
. (39)

By the previous argument,
(∑T

s+h=1 ēs+hē
′
s+h

)−1
ēt+h = OP (T−1). Notice that

T∑
s+h=1

ūs+hē
′
s+h =

T∑
s+h=1

ūs+hū
′
s+h +

T∑
s+h=1

ūs+hf
′
s+hλ̄.

It is simple to show that ∑T
s+h=1 ūs+hū

′
s+h = OP (T/n) and ∑T

s+h=1 ūs+hf
′
s+hλ̄ =

OP (
√
T/n). Therefore, ‖qn,2‖ = OP

(
T/n+

√
T/n

)
·OP (T−1). By (39), we have

n−1/2
n∑
i=1
‖ζi,t+h‖2 = OP

(
n1/2‖qn,2‖2

)
= OP

(
n−3/2 + n−1/2T−1

)
= oP (1).

This completes the proof.

A.7 Theorem 5

Proof. By (12) and Lemma 1, we have that

√
n

[
∆û2

t+h − n−1
n∑
i=1

E(u2
i,t+h,1 − u2

i,t+h,2 | F)
]

= n−1/2
n∑
i=1

[
(u2

i,t+h,1 − u2
i,t+h,2)− E(u2

i,t+h,1 − u2
i,t+h,2 | F)

+ 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2) + u′i,t+hDt+h

]
+ oP (1), (40)

where Dt+h = λ̄′(λ̄λ̄′)−1
(
n−1∑n

i=1[λi,1λ′i,1 − λi,2λ′i,2]
)
ft+h. Since λ̂′i − λ′i(λ̄λ̄′)−1λ̄ = oP (1),

ēt+h = λ̄′ft+h + oP (1) and (λ̄λ̄′)−1 exists asymptotically, we have D̂t+h = Dt+h + oP (1).

Since {ui,t+h,m}ni=1 is independent across i, the result then follows by the classical CLT and

a self-normalized CLT; see e.g., Theorem 4.1 of Chen et al. (2016); Peña et al. (2008).
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A.8 Theorem 6

Proof. By Lemma 1, we have that under the null hypothesis,

n−1/2
n∑
i=1

[
(λ̂′i,1ēt+h)2 − (λ̂′i,2ēt+h)2

]
= 2n−1/2ū′t+hλ̄

′(λ̄λ̄′)−1
n∑
i=1

(
λi,1λ

′
i,1 − λi,2λ′i,2

)
ft+h + oP (1).

Since {ui,t+h,m}ni=1 is independent across i, the result then follows by the classical CLT

and a self-normalized CLT; see e.g., Theorem 4.1 of Chen et al. (2016); Peña et al. (2008).

A.9 Lemma 2

Proof. Under Assumptions A-F and Theorem 3 in Bai (2003), recall that the following result

holds:

λ̂′if̂t+h − λ′ift+h = n−1λ′i

n−1
n∑
j=1

λjλ
′
j

−1
n∑
j=1

λjujt+h

+ T−1f ′t+h

T−1
T∑

s+h=1
fs+hf

′
s+h

−1
T∑

s+h=1
fs+huis+h +OP (1/min{n, T}).

Using this result, we have λ̂′i,mft+h = λ′i,mft+h + ξi,t+h,m for m ∈ {1, 2}, where

ξi,t+h,m = n−1λ′i

n−1
n∑
j=1

λjλ
′
j

−1
n∑
j=1

λj,mujt+h,m

+ T−1f ′t+h

T−1
T∑

s+h=1
fs+hf

′
s+h

−1
T∑

s+h=1
fs+huis+h,m +OP (1/min{n, T}).

It follows that

n−1
n∑
i=1

[
(λ̂′i,1f̂t+h)2 − (λ̂′i,2f̂t+h)2

]
= n−1

n∑
i=1

[(λ′i,1ft+h)2 − (λ′i,2ft+h)2]

+ 2n−1
n∑
i=1

[λ′i,1ft+hξi,t+h,1 − λ′i,2ft+hξi,t+h,2]

+ n−1
n∑
i=1

[ξ2
i,t+h,1 − ξ2

i,t+h,2].
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The last term is of order 1/min{n, T}, which is negligible if
√
n/T = o(1). Under

assumptions of weak (cross-sectional and serial) dependence in ui,t+h,m (e.g., Assumptions E

and F in Bai (2003)), we can show that

n−1
n∑
i=1

λ′i,mft+hξi,t+h,m = n−1
n∑
i=1

λ′i,mft+hui,t+h,m + oP (n−1/2).

Using this, it follows that

n−1
n∑
i=1

[
(λ̂′i,1f̂t+h)2 − (λ̂′i,2f̂t+h)2

]
= n−1

n∑
i=1

[(λ′i,1ft+h)2 − (λ′i,2ft+h)2]

+ 2n−1
n∑
i=1

[λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2] + oP (n−1/2).

The stated result follows from this.
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Table 1: Firm coverage by forecaster

Panel A: Total number of firms covered
Total Consumer Manufacturing High tech Health Other

MERRILL 1825 233 382 409 159 642
JPMORGAN 1796 210 341 455 166 624
FBOSTON 1752 211 375 417 121 628
GOLDMAN 1602 193 358 387 123 541
MORGAN 1473 170 305 352 117 529
LAWRENCE 1437 151 297 372 113 504

Panel B: Average number of firms covered
Total Consumer Manufacturing High tech Health Other

MERRILL 356 45 81 76 29 125
JPMORGAN 311 38 79 72 27 96
FBOSTON 277 34 70 60 17 96
GOLDMAN 283 37 72 64 21 88
MORGAN 243 29 55 53 19 88
LAWRENCE 239 27 57 56 16 82

Note: Panel A reports the number of different firms whose quarterly earnings per share is predicted by each
brokerage firm for at least one quarter during our sample. Panel B reports the average number of quarterly
earnings per share forecasts generated by each brokerage firm both in the aggregate (first column) and across
five industries (columns 2-6).

Table 2: Estimated number of common factors in the earnings forecast errors

GR ER ED
FBOSTON 1 1 1
JPMORGAN 0 0 0
MORGAN 2 2 2
GOLDMAN 1 1 1
LAWRENCE 1 1 3
MERRILL 1 1 1

Note: This table presents estimates of the number of common factors in the earnings forecast errors using
the methods in Ahn and Horenstein (2013) and Onatski (2010). Columns labeled “GR” and “ER” report
the “’Growth Ratio” and “Eigenvalue Ratio” statistics proposed by Ahn and Horenstein (2013), while the
column labeled “ED” reports the Onatski (2010) statistic.
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Table 3: Correlations across earnings forecast errors

Average correlations in forecast errors
No. factors FBOSTON JPMORGAN MORGAN GOLDMAN LAWRENCE MERRILL
0 0.09 0.08 0.07 0.08 0.12 0.08

(40.22) (43.50) (25.12) (37.41) (39.02) (57.97)
1 -0.01 0.00 0.03 0.00 -0.01 0.00

(-2.62) (0.34) (9.95) (1.08) (-2.24) (2.82)
2 -0.01 -0.00 0.01 0.01 -0.01 -0.00

(-2.39) (-1.87) (5.07) (4.41) (-2.68) (-0.71)
Note: This table reports estimates of the average pair-wise correlation in earnings forecast errors along
with the test statistic for non-zero average correlations proposed by Pesaran (2004) in brackets underneath.
Results are presented using raw forecast errors (row labeled "0") as well as residuals from a regression that
accounts for one and two common factors in the residuals (rows labeled "1" and "2").

Table 4: Heterogeneity in factor loadings within and across industries

Aggregate consumer manufacturing high tech health other
FBOSTON 0.067 0.066 0.075 0.049 0.043 0.070
JPMORGAN 0.062 0.049 0.058 0.052 0.067 0.070
MORGAN 0.096 0.048 0.101 0.049 0.064 0.123
GOLDMAN 0.074 0.086 0.060 0.072 0.048 0.080
LAWRENCE 0.069 0.075 0.061 0.077 0.084 0.065
MERRILL 0.057 0.048 0.051 0.067 0.063 0.051

Note: This table reports the standard deviation of the estimated factor loadings for the earnings forecast
errors across all firms (column 1) as well as for different industries (columns 2-6). For each set of forecast
errors, we estimate a model with a single common factor on the normalized forecast errors, demeaned and
scaled to have a unit sample variance.

ẽi,t = λi,1f1,t + εi,t,

sucject to the constraint:
∑N

i λ2
i,1 = 1. The table reports the standard deviation of the factor loadings λi,1

within each group of firms.

Table 5: Contributions of idiosyncratic error variance and squared bias components

Difference in idiosyncratic variance (%)
MORGAN vs. GOLDMAN MORGAN vs. MERRILL GOLDMAN vs. MERRILL LAWRENCE vs. MERRILL
Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio

PCA 39.85 86.97 55.23 61.75 64.10 51.30 74.82 98.34
CCE 1.31 31.91 51.57 63.01 94.79 105.98 43.34 76.81
Cluster 96.46 93.58 96.35 92.91 93.40 90.74 85.46 89.45

Difference in squared bias (%)
MORGAN vs. GOLDMAN MORGAN vs. MERRILL GOLDMAN vs. MERRILL LAWRENCE vs. MERRILL
Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio Mean Ratio Variance Ratio

PCA 60.15 7.70 44.77 16.41 35.90 31.67 25.18 6.07
CCE 98.69 64.37 48.43 15.71 5.21 6.94 56.66 7.74
Cluster 3.54 0.35 3.65 0.64 6.60 0.44 14.20 0.42

Note: Columns labeled mean ratio report the sample average of the ratio of the mean contribution to the total loss difference that comes from differences in
idiosyncratic variances (top panel) or differences in squared biases (bottom panel) for a given pair of brokerage firms. Columns labeled variance ratio report
the ratio of the sample variance of the squared idiosyncratic error differences to the sample variance of the total loss difference (top panel) or the ratio of the
variance of the squared bias difference to the variance of the total loss difference (bottom panel), averaged across all quarters in the sample.
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Table 6: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal conditional squared error loss

Coverage probability

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 91.6 91.6 91.1 90.8 90.9 90.4 89.8
25 93.8 94.0 93.4 93.4 93.3 93.3 92.9
50 94.5 94.3 94.3 94.1 94.0 94.4 94.2
100 94.5 94.7 94.5 94.5 94.6 94.4 94.4
200 94.8 94.9 94.8 94.8 94.7 94.7 94.8
1000 94.9 95.2 95.1 95.0 95.1 94.8 95.2

Note: This table reports the coverage probability for a 95% con-
fidence interval for the test of equal conditional squared error loss,
E(∆Lt+h | F) = 0 using the Monte Carlo simulation setup described
in Section 5.1 and 2,000 random samples. n refers to the number
of cross-sectional units used in the pair-wise comparison of loss dif-
ferences, while ρ2 measures the predictive power of the underlying
forecasts.
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Table 7: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal squared biases

Clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.0 96.6 93.8 92.7 92.5 90.8 91.8
25 97.3 96.6 94.4 94.1 93.1 93.2 93.4
50 96.3 95.7 95.6 93.9 95.2 94.1 93.7
100 95.9 95.3 94.9 94.9 94.9 94.1 94.3
200 95.9 94.4 93.8 95.4 95.5 95.3 95.0
1000 95.4 94.8 94.8 95.4 95.1 95.5 95.1

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.7 96.2 93.6 92.1 92.5 90.7 91.4
25 97.1 96.1 94.2 93.9 92.9 93.0 93.2
50 96.3 95.4 95.3 93.6 95.0 93.6 93.1
100 95.7 95.3 94.6 94.8 94.4 93.9 93.8
200 95.3 93.9 93.6 94.9 95.2 95.1 94.5
1000 94.7 94.2 94.7 95.1 94.7 95.2 94.8

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 99.1 96.9 92.2 91.4 91.9 90.4 91.0
25 97.1 92.6 92.4 93.1 92.5 92.9 93.2
50 95.0 91.7 94.2 92.0 94.6 93.3 93.2
100 90.6 92.7 93.3 94.1 93.6 93.4 93.7
200 90.2 92.5 93.6 93.4 94.8 95.2 94.9
1000 91.3 92.6 93.6 94.3 93.8 94.6 94.9

Note: This table reports the coverage probability for a 95% confidence
interval for the test of equal squared biases, using the Monte Carlo simu-
lation setup described in Section 5.1 and 2,000 random samples. n refers
to the number of cross-sectional units used in the pair-wise comparison of
loss differences, while ρ2 measures the predictive power of the underlying
forecasts. We show coverage probabilities for the clustering, CCE, and
PCA methods described in Section 3. The assumed time-series dimension
is T = 80.
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Table 8: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal idiosyncratic error variances

Coverage probability (clustering)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 93.7 94.8 95.4 96.4 95.6 98.0 99.1
25 94.8 94.6 97.4 97.3 97.8 98.5 99.4
50 95.3 96.3 97.0 97.3 98.1 99.0 99.6
100 95.3 96.6 97.3 97.8 98.6 99.2 99.8
200 95.8 96.6 97.7 98.6 98.2 99.0 99.4
1000 95.7 96.4 98.0 97.8 98.3 99.5 99.7

Coverage probability (CCE)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.3 96.5 97.0 98.0 97.1 99.2 99.5
25 96.1 96.4 98.4 98.5 98.5 99.3 99.7
50 96.4 97.3 97.9 98.3 99.0 99.6 99.8
100 96.5 97.1 98.4 98.7 99.1 99.7 100.0
200 96.4 97.6 98.5 99.1 98.9 99.4 99.7
1000 96.4 97.1 98.7 98.6 99.1 99.8 99.9

Coverage probability (PCA)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 91.3 91.0 93.1 94.1 95.4 98.0 99.1
25 94.1 92.8 96.1 96.8 97.4 98.6 99.3
50 94.6 94.5 96.5 97.0 97.9 99.0 99.6
100 93.3 95.5 96.3 97.5 98.4 99.1 99.7
200 95.0 95.8 96.8 98.4 98.0 99.1 99.4
1000 94.8 95.3 97.6 97.1 98.0 99.4 99.7

Note: This table reports the coverage probability for a 95% confidence
interval for the test of equal idiosyncratic variances, using the Monte Carlo
simulation setup described in Section 5.1 and 2,000 random samples. n
refers to the number of cross-sectional units used in the pair-wise com-
parison of loss differences, while ρ2 measures the predictive power of the
underlying forecasts. We show coverage probabilities for the clustering,
CCE, and PCA methods described in Section 3. The assumed time-series
dimension is T = 80.
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Figure 1: Cross-sectional test statistics for comparisons of the null of equal squared error
loss conducted on pairs of brokerage firms
Positive values of the test statistics indicate that the second forecaster is more accurate than the first
forecaster, while negative values suggest the reverse.

Figure 2: Values of the cross-sectional test of equal idiosyncratic variances conducted on
individual quarters
Each panel shows the outcome of a cross-sectional test of the null that a pair of forecasters produce the
same idiosyncratic error variance in a given quarter. Red color indicates that the idiosyncratic error variance
component of the first forecaster is larger than that of the second forecaster. Blue color indicates the reverse.
The first and second rows of each panel estimate the factors by PCA and CCE, respectively, while the third
row is calculated by assuming identical factor loadings within each cluster. Asterisks represent quarters with
test statistics that are statistically significant at the 5% level.

Figure 3: Values of the cross-sectional test of equal squared biases conducted on individual
quarters
Each panel shows the outcome of a cross-sectional test of the null that a pair of forecasters produce the
same squared bias in a given quarter. Red color indicates that the squared bias component of the first
forecaster is larger than that of the second forecaster. Blue color indicates the reverse. The first and second
rows of each panel estimate the factors by PCA and CCE, respectively, while the third row is calculated by
assuming identical factor loadings within each cluster. Asterisks represent quarters with test statistics that
are statistically significant at the 5% level.
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Table A1: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal squared biases (5-cluster DGP)

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 88.1 86.6 84.2 83.8 81.8 78.5 77.1
25 97.3 96.0 95.0 94.2 94.2 91.6 90.6
50 98.2 97.5 96.1 95.9 95.0 94.3 93.9
100 98.2 97.4 96.8 95.6 95.0 94.5 94.6
200 98.4 96.5 95.8 95.3 94.9 94.6 95.1
1000 96.9 96.2 96.1 95.8 95.5 95.8 95.3

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.5 97.5 95.2 94.6 93.6 90.7 90.6
25 98.6 97.1 95.7 95.5 93.3 93.1 91.2
50 98.4 96.6 94.9 94.5 93.4 92.9 93.3
100 96.6 95.6 94.5 93.7 93.5 93.8 93.2
200 95.7 93.3 92.9 92.8 92.7 92.4 93.9
1000 94.3 93.0 93.5 93.2 93.1 93.7 93.4

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 99.7 99.4 98.7 99.5 99.7 99.8 99.9
25 99.7 99.2 99.9 99.9 99.8 100.0 100.0
50 99.2 99.7 100.0 100.0 99.9 100.0 99.9
100 98.8 99.7 99.9 100.0 100.0 100.0 100.0
200 99.7 99.8 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: This table reports the coverage probability for a 95% confidence in-
terval for the test of equal squared biases, using the Monte Carlo simulation
setup described in Section 5.1 and 2,000 random samples. n refers to the
number of cross-sectional units used in the pair-wise comparison of loss dif-
ferences, while ρ2 measures the predictive power of the underlying forecasts.
We show coverage probabilities for the clustering, CCE, and PCA methods
described in Section 3. The assumed time-series dimension is T = 80. The
underlying data generating process assumes factor loadings that follow a
cluster structure with 5 clusters and n/5 elements in each cluster.
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Table A2: Coverage probabilities for 95% confidence intervals constructed to test the null of
equal idiosyncratic error variances (5-cluster DGP)

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.0 98.0 98.4 98.8 99.0 99.5 99.8
25 96.4 97.1 98.3 98.8 98.9 99.8 99.7
50 96.4 96.5 97.6 98.7 99.1 99.8 99.8
100 96.8 96.6 97.9 98.4 99.0 99.6 99.8
200 96.4 97.1 98.5 98.6 98.9 99.1 99.7
1000 95.7 96.7 97.9 97.9 98.7 99.4 99.5

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.8 95.4 96.6 96.6 97.0 98.4 98.9
25 95.4 96.8 97.4 97.5 97.7 98.8 99.3
50 95.8 95.9 96.6 97.6 98.3 99.3 99.4
100 97.0 96.6 97.5 98.2 98.1 99.0 99.6
200 95.8 96.2 97.5 98.5 98.4 98.4 99.2
1000 95.7 96.7 97.9 97.0 98.3 98.9 98.9

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 92.3 91.2 91.3 92.9 93.2 92.3 92.3
25 93.1 94.4 94.9 94.7 94.2 94.4 95.2
50 94.2 93.6 94.2 95.2 95.5 96.0 95.1
100 95.6 94.8 95.4 95.5 95.5 95.6 95.6
200 94.8 95.5 95.8 96.1 95.8 94.8 95.7
1000 95.1 94.8 95.8 94.1 96.4 95.3 95.7

Note: This table reports the coverage probabilities for 95% con-
fidence intervals for the test of equal idiosyncratic variances using
the Monte Carlo simulation setup described in Section 5.1 and
2,000 random samples. n refers to the number of cross-sectional
units used in the pair-wise comparison of loss differences, while ρ2

measures the predictive power of the underlying forecasts. We
show coverage probabilities for the clustering, CCE, and PCA
methods described in Section 3. The assumed time-series dimen-
sion is T = 80. The underlying data generating process assumes
that factor loadings follow a cluster structure with 5 clusters and
n/5 elements in each cluster.
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Table A3: Coverage probability of 95% confidence intervals: 2 factors with heterogeneous
loadings

CCE: squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.2 95.4 93.2 94.0 92.1 92.0 91.8
25 97.7 94.7 93.1 94.2 93.7 94.3 93.8
50 95.4 94.2 92.5 93.5 94.6 94.3 94.7
100 94.7 94.3 93.7 94.8 95.1 94.6 94.2
200 92.9 94.2 94.5 93.4 94.4 95.0 95.0
1000 93.7 94.2 94.8 93.9 94.0 95.4 94.1

PCA: squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.3 95.1 89.9 88.4 86.0 85.7 84.6
25 95.7 91.9 89.4 90.7 90.5 90.1 90.0
50 93.6 88.7 89.0 91.1 93.0 92.1 93.0
100 90.1 89.5 91.8 92.7 93.1 93.7 93.8
200 87.5 89.7 93.0 93.5 93.5 94.7 94.5
1000 87.3 91.5 93.0 94.7 92.9 94.6 94.7

CCE: variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.5 96.0 97.1 96.3 96.6 97.8 98.9
25 96.2 96.8 97.3 98.0 97.6 98.5 98.9
50 95.6 96.4 97.5 98.0 98.1 99.1 99.3
100 96.5 96.7 97.7 97.9 98.6 98.9 99.5
200 96.3 96.2 97.5 97.8 98.9 99.4 99.4
1000 95.7 96.5 97.7 98.2 98.3 99.3 99.4

PCA: variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 92.4 93.0 92.3 93.8 94.3 96.7 98.5
25 94.3 93.7 94.9 95.8 96.0 98.0 99.0
50 93.4 94.5 96.0 96.7 97.5 98.6 99.3
100 94.8 94.9 96.1 97.4 97.9 98.7 99.2
200 94.6 94.7 96.0 97.3 97.4 99.4 99.4
1000 94.1 95.4 96.5 97.2 97.9 98.9 99.2

Note: This table reports the coverage probability for a 95% confidence
interval for the test of equal squared biases (top two panels) or equal
idiosyncratic variances (panels 3 and 4), using the Monte Carlo simulation
setup described in Section 5.1 and 2,000 random samples. n refers to
the number of cross-sectional units used in the pair-wise comparison of
loss differences, while ρ2 measures the predictive power of the underlying
forecasts. We show coverage probabilities for the CCE and PCA methods
described in Section 3. The assumed time-series dimension is T = 80.
The underlying data generating process assumes two factors.
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Table A4: Coverage probability of 95% confidence intervals: 3 factors with heterogeneous
loadings

CCE method for difference in squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 96.8 95.2 91.9 92.7 91.1 89.1 88.9
25 96.5 94.4 92.8 90.3 91.7 88.9 85.9
50 95.2 94.0 90.6 90.9 88.4 84.6 77.6
100 92.8 92.3 88.4 88.1 84.6 75.1 66.1
200 93.0 89.4 84.8 81.1 75.5 63.9 53.8
1000 90.6 84.6 74.9 68.7 64.0 52.2 40.4

PCA method for difference in squared bias

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 98.1 96.9 92.7 91.3 88.7 88.3 88.0
25 98.2 95.1 93.2 93.0 93.3 92.4 93.9
50 96.0 94.3 93.1 92.2 92.9 95.0 94.4
100 94.3 91.9 94.2 94.8 94.8 95.1 94.6
200 92.1 93.3 94.0 95.6 94.7 95.0 95.4
1000 91.1 92.7 96.0 94.7 95.7 95.9 96.1

CCE method for difference in variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 94.5 97.1 96.3 97.5 97.5 98.3 99.0
25 96.3 97.5 97.7 98.0 97.4 98.5 98.8
50 96.5 96.4 98.4 97.5 98.1 98.3 97.6
100 97.2 96.3 97.8 97.8 96.7 94.6 90.5
200 95.4 97.1 97.4 95.7 94.9 86.5 77.6
1000 95.5 94.9 94.1 90.5 86.1 74.0 59.0

PCA method for difference in variance

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 92.1 92.8 91.3 93.6 93.8 96.1 97.5
25 93.7 94.4 94.6 95.9 95.9 98.0 98.8
50 94.4 93.9 96.9 96.0 97.0 98.4 98.7
100 95.1 94.2 96.7 97.1 96.7 99.1 98.6
200 93.5 95.2 96.7 97.6 98.3 98.9 98.9
1000 93.8 94.6 97.1 96.6 97.2 98.6 99.0

Note: This table reports the coverage probability for a 95% confidence
interval for the test of equal squared biases (top two panels) or equal
idiosyncratic variances (panels 3 and 4), using the Monte Carlo simulation
setup described in Section 5.1 and 2,000 random samples. n refers to
the number of cross-sectional units used in the pair-wise comparison of
loss differences, while ρ2 measures the predictive power of the underlying
forecasts. We show coverage probabilities for the CCE and PCA methods
described in Section 3. The assumed time-series dimension is T = 80.
The underlying data generating process assumes three factors.
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Table A5: Coverage probability of 95% confidence intervals: Breaks in the number of factors
with heterogeneous loadings

CCE method PCA method

difference in squared bias (before the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.4 95.6 93.5 91.9 90.9 89.5 89.4 99.6 98.2 94.5 91.1 89.9 85.8 85.4
25 97.2 95.6 92.1 92.2 91.3 88.7 88.3 99.2 96.6 93.0 92.0 92.3 89.8 91.1
50 95.2 91.7 90.6 90.1 90.3 87.1 85.6 98.0 95.0 93.4 93.1 92.5 91.7 92.0
100 94.1 91.1 89.8 89.9 87.8 84.6 76.7 95.1 94.4 93.6 92.5 94.0 94.0 93.3
200 93.5 92.0 88.7 85.6 85.7 77.6 65.7 94.3 93.7 93.8 93.3 94.0 94.8 94.2
1000 90.9 91.0 83.7 80.2 77.2 62.6 47.4 92.5 93.1 93.8 94.2 95.3 95.1 94.5

diff in squared bias (after the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 96.8 95.9 93.2 91.9 90.7 90.4 90.2 99.5 97.3 93.0 90.7 88.6 88.8 87.3
25 96.9 93.9 93.0 92.5 91.8 90.6 86.9 98.6 95.6 94.5 93.1 93.6 93.4 92.4
50 94.5 93.8 91.7 90.9 90.6 84.4 79.8 97.4 93.7 93.9 94.0 95.2 93.9 94.1
100 94.2 92.2 89.9 87.0 86.4 76.0 67.4 96.0 95.3 94.6 94.8 95.8 95.4 95.5
200 92.7 90.9 85.2 81.9 76.9 65.0 54.3 94.1 94.6 94.5 94.9 95.7 96.0 96.2
1000 90.7 85.2 73.7 68.2 64.1 47.8 39.8 94.0 95.2 96.0 95.5 95.0 96.2 96.2

diff in variance (before the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.4 95.6 95.6 96.8 97.2 98.3 99.0 91.8 91.6 92.3 92.9 94.4 97.3 98.4
25 95.5 96.4 97.4 97.5 98.2 98.7 99.4 93.3 94.6 95.4 96.0 97.5 98.5 99.5
50 95.8 95.8 97.4 98.3 98.7 99.2 99.6 94.4 94.1 96.1 97.2 97.7 99.2 99.5
100 96.2 96.9 97.2 98.0 98.4 98.4 96.8 94.9 94.8 96.2 97.1 98.7 99.3 99.2
200 96.3 96.2 96.9 97.6 98.1 95.7 88.5 94.7 95.2 96.9 97.9 98.5 99.0 99.8
1000 96.0 96.7 95.4 95.6 93.9 83.6 69.2 94.6 95.9 96.3 96.9 98.4 99.6 99.2

diff in variance (after the break)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.3 96.0 96.7 97.2 97.6 98.9 99.2 91.8 91.7 92.3 93.6 94.4 96.9 98.0
25 96.4 96.2 98.3 98.3 98.7 99.1 98.7 93.1 92.8 96.0 95.5 96.7 98.6 98.2
50 96.1 97.7 98.0 98.0 98.2 97.9 98.2 93.8 94.4 95.7 96.6 97.2 98.5 99.3
100 97.2 97.0 97.7 97.4 96.7 94.6 89.9 94.8 95.2 96.7 97.2 97.4 98.6 99.0
200 95.9 97.2 96.3 96.4 94.2 87.9 74.8 94.4 95.4 96.5 97.4 97.6 99.0 99.0
1000 96.2 96.5 93.5 89.3 84.9 67.9 56.0 94.9 95.6 96.7 97.1 97.4 98.9 99.3

Note: This table reports the coverage probability for a 95% confidence interval for the test of equal squared biases (top two
panels) or equal idiosyncratic variances (panels 3 and 4), using the Monte Carlo simulation setup described in Section 5.1 and
2,000 random samples. n refers to the number of cross-sectional units used in the pair-wise comparison of loss differences, while
ρ2 measures the predictive power of the underlying forecasts. We show coverage probabilities for the CCE and PCA methods
described in Section 3. The assumed time-series dimension is T = 80. The underlying data generating process assumes that
there are initially two factors but that this changes to three factors in the second half of the sample.
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Table A6: 95% Coverage probabilities for a 95% confidence interval for testing the null of
equal conditionally expected loss under Linex loss

Coverage probability (linex loss)

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 89.5 90.5 89.2 88.9 89.0 88.1 87.8
25 92.6 93.0 92.9 92.5 93.1 92.1 90.5
50 95.4 94.5 94.3 94.2 93.8 93.0 92.3
100 95.1 94.2 94.3 94.1 94.2 94.0 93.6
200 95.0 94.9 94.5 95.0 95.1 94.9 94.1
1000 94.3 95.4 95.3 94.8 94.7 95.0 95.8

Note: This table reports the coverage probability for a 95% confi-
dence interval for the test of equal expected loss, E(∆Lt+h | F) =
0, using the linex loss function. We use the Monte Carlo simula-
tion setup described in Section 5.1 and 2,000 random samples. n
refers to the number of cross-sectional units used in the pair-wise
comparison of loss differences, while ρ2 measures the predictive
power of the underlying forecasts.
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Table A7: Coverage probabilities for a 95% confidence interval for the average difference in
squared bias under conditionally heteroskedastic shocks

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.9 96.3 94.2 93.7 93.0 91.0 91.3
25 98.2 96.1 94.9 94.1 93.6 92.6 94.2
50 96.1 95.7 95.0 94.0 94.8 94.5 94.7
100 96.0 96.0 94.5 94.6 95.3 94.3 94.1
200 96.1 95.8 94.3 94.1 95.4 95.1 95.0
1000 95.3 94.8 95.1 94.5 94.5 94.5 95.7

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.8 95.9 94.0 93.3 92.0 90.2 91.2
25 98.3 96.0 94.6 94.1 93.2 92.2 93.9
50 96.1 95.2 94.8 93.5 94.6 94.0 94.3
100 95.7 95.8 94.3 94.4 95.1 94.2 93.8
200 95.8 95.2 94.1 93.8 94.9 94.6 94.8
1000 94.9 94.7 94.8 94.2 94.1 94.1 95.3

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 97.7 94.8 90.1 89.2 90.2 89.8 90.8
25 96.1 91.4 91.7 91.8 91.9 92.1 94.1
50 92.1 88.4 91.6 93.1 94.1 93.6 94.5
100 89.8 89.3 91.2 93.3 94.0 94.1 93.6
200 87.0 89.9 93.7 92.9 94.1 94.4 94.8
1000 86.7 91.0 93.9 93.4 94.0 93.8 95.2

Note: This table reports coverage probabilities for 95% confidence inter-
vals for the test of equal squared biases using the Monte Carlo simulation
setup described in Section 5.1 and 2,000 random samples. n refers to the
number of cross-sectional units used in the pair-wise comparison of loss
differences, while ρ2 measures the predictive power of the underlying fore-
casts. We show coverage probabilities for the clustering, CCE, and PCA
methods described in Section 3. The assumed time-series dimension is
T = 80. The table replaces the assumption of i.i.d standard normal errors
and factors with an assumption of ARCH dynamics.
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Table A8: Coverage probabilities for a 95% confidence interval for the average difference in
variance under conditionally heteroskedastic shocks

clustering

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 94.3 94.4 95.7 95.8 96.5 97.9 98.3
25 95.1 96.4 96.8 96.4 98.1 99.2 99.5
50 95.4 96.5 97.5 98.0 98.0 98.7 99.6
100 95.6 96.7 97.3 96.9 98.1 99.0 99.7
200 95.5 96.2 96.4 97.4 97.7 98.9 99.6
1000 94.5 96.2 97.1 97.6 98.3 98.9 99.0

CCE

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 95.8 96.2 97.1 97.0 97.9 98.9 99.3
25 95.8 97.0 98.1 97.6 98.9 99.6 99.7
50 96.3 97.5 98.2 98.4 98.5 99.2 99.8
100 96.1 97.1 98.0 98.1 99.1 99.6 99.8
200 96.4 96.9 97.6 98.3 98.6 99.3 99.9
1000 95.1 96.9 98.1 98.4 98.7 99.5 99.6

PCA

n \ ρ2 0.05 0.1 0.2 0.25 0.3 0.4 0.45
10 93.4 92.7 92.1 93.1 95.1 97.4 98.1
25 93.1 93.4 94.9 95.3 97.7 99.3 99.2
50 94.0 94.4 96.9 97.2 97.7 98.6 99.6
100 94.1 95.0 96.4 96.6 97.8 99.1 99.7
200 94.4 94.5 95.7 97.2 97.8 98.9 99.6
1000 93.8 94.6 96.5 97.3 97.9 98.8 98.9

Note: This table reports the coverage probability for 95% confidence
intervals for the test of equal idiosyncratic error variances, using the
Monte Carlo simulation setup described in Section 5.1 and 2,000 random
samples. n refers to the number of cross-sectional units used in the
pair-wise comparison of loss differences, while ρ2 measures the predictive
power of the underlying forecasts. We show coverage probabilities for the
clustering, CCE, and PCA methods described in Section 3. The assumed
time-series dimension is T = 80. The table replaces the assumption of
i.i.d standard normal errors and factors with an assumption of ARCH
dynamics.
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Table A9: Expected length of 95% confidence intervals

squared bias variance

clustering

n \ ρ2
e 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 3.84 3.35 2.93 2.81 2.40 2.27 2.08 4.95 4.23 3.66 3.44 2.94 2.68 2.43
25 2.42 2.15 1.89 1.69 1.55 1.53 1.40 3.25 2.86 2.46 2.18 1.93 1.91 1.68
50 1.72 1.48 1.33 1.29 1.13 1.13 1.05 2.37 2.00 1.77 1.67 1.45 1.41 1.28
100 1.22 1.07 0.96 0.87 0.85 0.76 0.72 1.70 1.47 1.27 1.14 1.10 0.97 0.90
200 0.88 0.76 0.69 0.61 0.58 0.55 0.50 1.22 1.04 0.92 0.80 0.74 0.70 0.63
1000 0.55 0.47 0.42 0.40 0.37 0.35 0.33 0.77 0.65 0.57 0.53 0.48 0.44 0.41

CCE

n \ ρ2
e 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 4.28 3.74 3.17 2.79 2.31 1.83 1.31 6.00 4.92 4.03 3.43 2.75 2.12 1.46
25 3.20 2.77 2.30 1.86 1.53 1.22 0.82 4.07 3.41 2.78 2.21 1.79 1.42 0.95
50 2.45 1.96 1.65 1.42 1.14 0.90 0.60 3.02 2.38 1.97 1.67 1.33 1.05 0.70
100 1.78 1.46 1.23 0.97 0.81 0.62 0.42 2.17 1.75 1.45 1.16 0.95 0.72 0.49
200 1.32 1.06 0.87 0.69 0.58 0.44 0.29 1.57 1.25 1.03 0.81 0.67 0.52 0.34
1000 0.83 0.66 0.54 0.45 0.36 0.28 0.18 0.99 0.79 0.64 0.53 0.43 0.33 0.22

PCA

n \ ρ2
e 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 3.50 2.89 2.41 2.03 1.59 1.24 0.81 3.99 3.13 2.52 2.08 1.63 1.25 0.82
25 2.58 2.12 1.73 1.39 1.12 0.88 0.58 2.67 2.18 1.76 1.41 1.12 0.88 0.58
50 1.94 1.53 1.26 1.07 0.84 0.66 0.44 1.98 1.55 1.27 1.07 0.85 0.67 0.44
100 1.41 1.14 0.93 0.75 0.61 0.47 0.32 1.42 1.14 0.93 0.75 0.62 0.47 0.32
200 1.01 0.81 0.67 0.53 0.43 0.33 0.22 1.02 0.81 0.67 0.53 0.43 0.34 0.22
1000 0.65 0.51 0.42 0.35 0.28 0.22 0.14 0.65 0.52 0.42 0.35 0.28 0.22 0.14

Note: This table assumes a three-factor data generating process with random factor loadings. Parameters are set to match
the average cross-sectional R2 value observed in the empirical application.
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